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A B S T R A C T

We consider the problem of recovering the surface wave profile from noisy bottom pressure measurements
with (a priori unknown) arbitrary pressure at the surface. Without noise, the direct approach developed in
Clamond and Labarbe (2023) provides an effective way to recover the sea surface. However, the assumption
of analyticity for the measured pressure renders this method inefficient in the presence of noise. In order
to address this issue, we introduce here an optimisation procedure based on the minimisation of a distance
between a recovered bottom pressure and its measurement. Such method proves to be well-designed to handle
perturbed signals. We illustrate the effectiveness of this approach in the recovery of gravity-capillary waves
from unfiltered noisy data.
1. Introduction

Monitoring the surface of the ocean is a timely concern for climatic
and environmental considerations, especially in coastal regions where
large waves represent a risk when approaching the shoreline. For this
reason, in the second half of the last century, some scientists emitted
the idea of sending probes at the seabed to measure the pressure and re-
construct the surface profile from these data [1]. This procedure allows
to determine the shape of water-waves without intrusive observations,
although it necessitates to solve an inverse problem within an unknown
domain. Such problem is notoriously challenging, notably because of its
ill-posedness (any disturbance grows exponentially from the bottom to
the free surface).

Historically, the first attempt to solve this problem relied on hydro-
static theory and assumed the surface elevation as being proportional
to the weight of the water column. Later, from a linear approximation
of the problem, an explicit expression for the surface was given in
terms of a certain pressure transfer function [2]. Noticeably, a recent
work derived an exact formula for steady rotational waves using lin-
ear theory [3]. However, both these assumptions were not suited to
describe large waves or of non-trivial profile (i.e. not sinusoidal). It
was only recently that the first results on the full nonlinear problem
were obtained [4]. This study resulted in a nonlocal integro-differential
equation for the surface elevation that was highly difficult to solve
in practice without considering asymptotic limits. Slightly after this
work, an efficient procedure for the recovery of nonlinear steady water-
waves was formulated [5,6]. This approach relies on the assumption
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(D. Clamond).

that bottom pressure can be analytically continued as a holomorphic
function, allowing to express the surface elevation as a solution of
an algebraic equation. Numerical investigation of this method was
done for extreme waves [6] and it was rigorously proved to converge
in the case of steady surface gravity waves from a mere fixed-point
algorithm [7]. Subsequently, this theory was extended to handle more
complex configurations, such as the presence of a linear shear cur-
rent [8], the possibility of overhanging waves [9] or the influence of
arbitrary pressure at the surface [10]. We note the proof for the exis-
tence of nonlinear water-waves with constant vorticity and overturning
wave profiles [11,12].

The method originally developed in [6] consistently proved its effec-
tiveness in terms of accuracy, computation time and accessibility, even
considering technical difficulties (stagnation points, limiting waves,
capillary effects, etc.). However, the formulation inherently depends
on the analyticity of the measurement, which is not the case in real-
life observations where the presence of external noise is inevitable.
Moreover, since we are performing most of the calculations in the
complex plane, then it prohibits us to directly extend this approach to
the three-dimensional configuration. For all these reasons, we introduce
a new and innovative formulation, based on an optimisation method, to
solve this constrained inverse problem with noise in the measurements.

To the best of authors’ knowledge, surface wave recovery within an
optimisation framework has never been considered in the literature. As
it turns out, one can relate this reconstruction problem to an optimal
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control approach, where the goal is to find a set of parameters or
functions minimising a given cost functional under some dynamical
constraints. (We refer interested readers to [13] for an introduction
on this subject.) In the current inverse problem, the undetermined
function is the surface profile and the cost functional will be the
distance to the observation. In this sense, this problem is close to some
shape optimisation or topology optimisation (TO) configurations. These
problems consist in finding the optimal shape of an obstacle immersed
in a moving fluid (see [14,15] and references therein for an overview
on the numerical resolution of TO problems applied to several physical
settings). Although it yields satisfactory results in general, the main
drawback of the shape optimisation problem comes from its numerical
complexity. This is because the underlying dynamical constraints are
usually discretised using a Finite Element method, which relies on a
prescribed mesh adapted to the shape of the obstacle. In this setting,
the shape of the immersed obstacle is updated at each iteration, leading
to an expensive recalculation of the mesh [16]. Thus, all techniques
avoiding this costly procedure necessarily enhance the formulation.

The method we consider in this work relies on a predefined dis-
cretisation of some analytical expressions we derived in an earlier
work, from a boundary integral method [9]. Combining this analytic
preprocessing within the optimisation framework has never been ex-
plored before and appears to be a suitable and innovative approach
for the surface reconstruction problem. Moreover, the algorithm we
develop is easily extendable to a broad range of situations (e.g. adding
further physical assumptions or noise in the measurements) and yields
an excellent agreement with the sought solution (comparable to the
results obtained in [10] using the holomorphic extension).

This article is articulated around the presentation, application and
comparison of two different methods to reconstruct surface waves when
considering noise or not. Section 2 introduces the equations of motion
and boundary conditions for the system of interest. Then, Sections 3
and 4 describe in details the direct and optimisation approaches, re-
spectively, and how to implement them numerically in an efficient way.
A numerical example is treated in Section 5 to explore and compare
thoroughly these methods. Finally, we discuss about the results we
obtained and on the eventual improvements and future extensions in
Section 6.

2. Problem statement

We consider a water wave of permanent form, travelling at constant
phase speed 𝑐 at the free surface of a homogeneous fluid. The bottom
f the fluid layer being flat, we set ourselves in the Galilean frame of
eference moving with the wave, so that motion appears stationary for
he observer. The fluid is considered inviscidand incompressible, the
otion is irrotational and we assume the free surface and the seabed

o be impermeable. These boundaries are located at 𝑦 = 𝜂(𝑥) for the
surface and 𝑦 = −𝑑 for the seabed, with 𝑦 being the vertical coordinate
and 𝑑 a constant mean depth. We also assume the streamwise direction
to have an infinite extension. Hence, the domain of definition is given
by 𝛺 = {(𝑥, 𝑦) ∶ 𝑥 ∈ R,−𝑑 ⩽ 𝑦 ⩽ 𝜂(𝑥)}. When the motion is periodic, we
ntroduce the wave period 𝐿 = 2𝜋∕𝑘 (the limit 𝑘 → 0+ corresponding to
solitary wave) where 𝑘 is a wavenumber. Thus, we define an Eulerian
veraging operator to fix the mean water level at 𝑦 = 0, i.e.

⟨𝜂⟩ ∶= 𝑘
2𝜋 ∫

𝜂(𝑥)d𝑥 = 0, (1)

where the path of integration is  = [−𝜋∕𝑘, 𝜋∕𝑘].
In the following, we use the subscripts ‘s’ and ‘b’ to denote the

restriction of fields at the surface and the bottom, respectively. Al-
ternatively, the subscript 𝑥 is used to express horizontal derivatives
(e.g. 𝜂𝑥 ∶= d𝜂∕d𝑥). We consider the pressure at the surface as an unde-
termined function of the 𝑥-coordinate, entering the equations through
the dynamical condition (supplemented with kinematic condition). The
velocity field 𝒖 = (𝑢, 𝑣) is governed by the steady Euler equations
 𝑧

2 
(expressing the conservation of mass and linear momentum) with as-
sociated boundary conditions. These assumptions yield the equations
of motion

𝛁 ⋅ 𝒖 = 0, in 𝛺 (2a)

𝒖 ⋅ 𝛁𝒖 + 𝛁𝑝 + 𝒈 = 0, in 𝛺 (2b)

𝒖 ⋅ 𝒏 − 𝒖 ⋅ 𝛁𝜂 = 0 at 𝑦 = 𝜂(𝑥), (2c)

𝑝 = 𝑝s(𝑥) at 𝑦 = 𝜂(𝑥), (2d)

𝒖 ⋅ 𝒏 = 0 at 𝑦 = −𝑑, (2e)

here 𝑝 is a relative pressure with zero mean-value at the surface
i.e. ⟨𝑝s⟩ = 0) and scaled with the constant background density 𝜌0. The
nit normal vector 𝒏 is directed outward and 𝒈 = (0, 𝑔) represents the
estoring gravity force, with 𝑔 the acceleration due to gravity (acting
ownwards). By integrating equation (2b), we recover the well-known
ernoulli principle (expressing the conservation of mechanical energy),

eading (in the irrotational case) to

(𝑝 + 𝑔𝑦) + 𝑢2 + 𝑣2 = 𝐵, (3)

here 𝐵 is the Bernoulli constant. From this principle and using the
ean operator (1), we establish the important relations ⟨𝑢2s + 𝑣2s ⟩ = 𝐵

nd ⟨𝑝b⟩ = 𝑔𝑑. Finally, we introduce the complex velocity 𝑤(𝑧) ∶=
(𝑥, 𝑦)−i𝑣(𝑥, 𝑦) that is holomorphic in the 𝑧-coordinate (with 𝑧 ∶= 𝑥+i𝑦).
e note that the free surface path is given by the curvilinear abscissa

s = 𝑥+i𝜂 whereas the solid lower boundary is described by 𝑧b = 𝑥−i𝑑.
The principal objective of this work is to recover the surface wave

rofile 𝜂(𝑥), the Bernoulli constant 𝐵 and the surface pressure 𝑝s(𝑥) from
given pressure observation 𝑝obsb (𝑥) at the seabed. The wave period
(or equivalently the wavenumber 𝑘) is also determined from the

ottom pressure by least-square minimisation [8]. This inverse problem
s notoriously difficult to solve due to the strong nonlinearities and
ts ill-posed nature (i.e. disturbances are exponentially growing to the
urface). Our first approach, developed in a series of articles [5–10],
s a direct approach set in the physical space and where analytical
xpressions (integro-differential in general) are given in terms of the
nknown surface wave profile and surface pressure.

. Numerical procedure: direct approach

.1. Cauchy integral formula

Computing steady surface waves from a boundary integral formula
s an idea initiated in a seminal work by Da Silva and Peregrine [17].
ereafter, we present a similar procedure to recover an implicit expres-

ion for the surface elevation using complex analysis [9]. We start by
iving the Cauchy integral formula, written for a holomorphic function
(𝑧), in its classical form

𝜗Ξ(𝑧) = P.V.∮
Ξ(𝑧′)
𝑧′ − 𝑧

d𝑧′ = ∫

∞

−∞

Ξ′
bd𝑥

′

𝑧′b − 𝑧
− ∫

∞

−∞

(

1 + i𝜂′𝑥
)

Ξ′
sd𝑥

′

𝑧′s − 𝑧
, (4)

with primes denoting the dependence on the dummy variable —
e.g. Ξ′

s ∶= Ξs(𝑥′). The inner angle 𝜗 is 2𝜋, 0 or 𝜋 when the coordinate
lies respectively inside, outside and at the smooth boundary of the

omain 𝛺.
Whenever the holomorphic function is purely real at the bottom

boundary (i.e. Im{Ξb} = 0), we may use the method of images (Schwarz
eflection principle [18]) on (4) to obtain

Ξ(𝑧) = 𝑘∫
L0{ei𝑘(𝑧

′
s−𝑧)}Ξ′

sd𝑧
′
s + 𝑘∫

L0{ei𝑘(𝑧−𝑧̄
′
s+2i𝑑)}Ξ̄′

sd𝑧s
′

+ 𝜋
⟨

Ξs
d𝑧s
d𝑥

+ Ξ̄s
d𝑧s′

d𝑥

⟩

, (5)

where L𝜈 is the 𝜈th polylogarithm [9] and 𝑧̄ the complex conjugate of
. The integration path is given by  = {𝑧 (𝑥) ∶ 𝑥 ∈ [−𝜋∕𝑘, 𝜋∕𝑘]} ⊂ C.
s
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Eq. (5) possesses a strong (polar) singularity causing technical dif-
ficulties when computing the integral numerically. Thus, we use the
integrated form of the polylogarithm to replace the polar term with a
logarithmic singularity [9]. We obtain

𝜗Ξ(𝑧) = i∫
𝜕𝑧L1{ei𝑘(𝑧

′
s−𝑧)}Ξ′

sd𝑧
′
s + i∫

𝜕𝑧L1{ei𝑘(𝑧−𝑧̄
′
s+2i𝑑)} Ξ̄′

sd𝑧s
′

+ 𝜋
⟨

Ξs
d𝑧s
d𝑥

+ Ξ̄s
d𝑧s′

d𝑥

⟩

, (6)

Computing the latter expression at the free surface, one gets

s d𝑧s =
i
2𝜋

d
[

∫
L1{ei𝑘(𝑧

′
s−𝑧)}Ξ′

s d𝑧
′
s + ∫

L1{ei𝑘(𝑧−𝑧̄
′
s+2i𝑑)} Ξ̄′

s d𝑧s
′
]

+
d𝑧s
2

⟨

Ξs
d𝑧s
d𝑥

+ Ξ̄s
d𝑧s′

d𝑥

⟩

. (7)

3.2. Expressions for computing steady surface waves and bottom pressure

From Bernoulli’s principle (3), the complex velocity at the surface
𝑤s is given explicitly by

𝑤s = 𝜎(d𝑧s∕d𝑥)
√

(𝐵 − 2𝑝s − 2𝑔𝜂)∕|d𝑧s∕d𝑥|
2, (8)

where 𝜎 = ∓1 denotes the direction of the current respectively to the
increasing/decreasing 𝑥-coordinate.

Let us consider the holomorphic function Ξ = 𝑤 + 𝑐 (𝑐 being
an arbitrary definition of the phase speed). The left-hand side of (7)
follows directly from (8) as

Ξsd𝑧s = (𝜔ℎ + 𝑐) d𝑧s + 𝜎
√

(𝐵 − 2𝑝s − 2𝑔𝜂)∕|d𝑧s∕d𝑥|
2d𝑥, (9)

where ℎ ∶= 𝜂 + 𝑑 is the wave height. We note that the radicand is
purely real since 𝐵 ⩾ 2||𝑝s+𝑔𝜂||∞ for all waves (according to Bernoulli’s
relation).

After integration of expression (7) – retaining the imaginary part
only – we obtain an equation for the computation of the free surface

𝜔𝜂2

2
−𝜂

⟨

𝑢s ||𝑢𝑑𝑧s∕d𝑥||
2
⟩

− 𝜎
2𝜋 ∫

Re{1}
√

(𝐵 − 2𝑝′s − 2𝑔𝜂′)∕|d𝑧′s∕d𝑥′|
2d𝑥′−𝐾 = 0,

(10)

where 𝐾 is a constant of integration, recovered by enforcing the mean-
level condition [9]. For the sake of brevity, we also introduced the
following notation

𝜈 ∶= L𝜈
[

ei𝑘(𝑧
′
s−𝑧s)

]

− L𝜈
[

ei𝑘(𝑧s−𝑧̄
′
s+2i𝑑)

]

.

As one can notice, expression (10) is not dependent on the choice of
phase speed 𝑐, as expected from the Galilean invariance of the problem.

Eq. (5) and the Schwarz reflection principle also let us find an
expression for the bottom velocity. Consider Ξ = 𝑤 as the holomorphic
unction in (5) and evaluate the expression at the bottom (with now
= 2𝜋). Since 𝑢b is a real function of the horizontal coordinate, we use

he method of images to recover its explicit form, which leads to the
ormula

b(𝑥) =
i𝑘
4𝜋

[

∫
cot

(

𝑘
𝑧′s − 𝑧b

2

)

𝑤′
sd𝑧s − ∫

cot
(

𝑘
𝑧̄′s − 𝑧b − 2i𝑑

2

)

𝑤̄′
sd𝑧s

′
]

.

(11)

This bottom velocity 𝑢b is used in Stokes’ first definition of the phase
speed

𝑐1 = − ⟨𝑢b⟩ . (12)

3.3. Holomorphic functions and recovery formula

As done numerous time in previous articles [5–10], we introduce a

holomorphic complex pressure function P(𝑧) by analytic continuation

3 
in the domain 𝛺. Using Bernoulli’s principle written for the complex
velocity, it yields an expression for the complex pressure as

P(𝑧) ∶= 𝑔𝑑 + 𝐵 −𝑤2

2
. (13)

Similarly, we introduce the antiderivative of P defined by

Q(𝑧) ∶= ∫

𝑧

𝑧0

[

P(𝑧′) − 𝑔𝑑
]

d𝑧′ = 1
2 ∫

𝑧

𝑧0

[

𝐵 −𝑤(𝑧′)2
]

d𝑧′, (14)

here 𝑧0 is an arbitrary constant.
In practice, these holomorphic functions are easily recovered from

he given pressure measurement by fitting the data over a suitable
igenbasis (one leading to the most accuracy with the lowest order
f quadrature). Assuming a periodic motion, we fit these data with a
ourier polynomial basis before performing an analytic continuation of
he pressure field. Evaluated at the surface, it yields

(𝑧) = 𝑝b(𝑧 + i𝑑) ≈ 𝑔𝑑 +
𝑁
∑

|𝑛|>0
p𝑛ei𝑛𝑘(𝑧+i𝑑). (15)

rom this definition, we simply integrate once and recover the second
olomorphic function as

s(𝑥) = ∫

𝑥

0

[

Ps(𝑥
′) − 𝑔𝑑

]

d𝑥′ ≈
𝑁
∑

|𝑛|>0

ip𝑛
𝑛𝑘

e−𝑛𝑘𝑎 − ei𝑛𝑘(𝑥+i𝜂)

e𝑛𝑘𝑑
, (16)

where 𝑎 is the amplitude of the wave at the crest (arbitrarily located at
𝑥 = 0).

In the context of the direct approach, we exploit a relation derived
in a recent work as our general recovery formula [10]. This expression
(not involving any differential terms of 𝜂) is given by

Re
{

Qs
}

= 1
2 ∫

𝑥

0

[

𝐵 −
|

|

|

|

𝐵 − 2
(

P′
s − 𝑔𝑑

)

|

|

|

|

]

d𝑥′. (17)

As one can notice, surface pressure has been eliminated from the re-
overy formula (17). This is because the Cauchy–Riemann system gives
s two equations (the real and complex parts) that can be combined
o suppress either the surface pressure of the surface elevation [10].
owever, it is still necessary to fix Bernoulli’s constant by adding a
irect measure (phase speed, wave height, etc.) or by assuming the
hysics at the surface (e.g. capillary or flexural effects). For this work,
e assume Stokes’s first definition of the phase speed to be a given
arameter. Thus, solving the inverse problem reduces to finding the
eros of the set of Eqs. (1), (12) and (17).

.4. The Levenberg–Marquardt procedure

In practice, solving the inverse problem with a direct approach is
airly straightforward. It only requires to introduce a quadrature for
umerical integration (we choose the trapezoidal quadrature) and then
nsert the different expressions in almost any root-finding algorithm
e.g. the fsolve function in Matlab). Numerically, 𝜂 = {𝜂𝑖}𝑖 is a vector
efined at these quadrature points. Because this problem is notori-
usly challenging to solve, we decide to use a Levenberg–Marquardt
lgorithm, which has shown its efficiency before (see [5–10]).

We quickly sketch this algorithm. Solving the inverse problem di-
ectly (for the surface profile) can be summarised as finding the root of
quation (𝜂) = 0 for some function  . This is equivalent as minimising
he functional  (𝜂) ∶= 1

2‖(𝜂)‖
2
2 =

1
2 ⋅  . There are two common ways

or this, both being iterative methods. Assume we are given an initial
uess 𝜂0 with the overscript standing for the iteration step. For any
teration 𝓁, we will denote 𝓁 ∶= (𝜂𝓁) and 𝜕𝓁

𝜕𝜂 ∶= 𝜕
𝜕𝜂 (𝜂

𝓁) the Jacobian
matrix of  computed at 𝜂𝓁 .

- The first method, the Gradient Descent (GD), consists in comput-
ing the negative gradient of the function  (𝜂) at 𝜂𝓁 in order to

𝓁+1
compute 𝜂 . Introducing an increment 𝛿𝜂GD , expression for the
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Fig. 1. Sketch of the procedure used for computing the bottom pressure from surface
nformation.

gradient follows immediately

− 𝜕
𝜕𝜂

(𝜂𝓁) = −
(

𝜕𝓁

𝜕𝜂

)⊺

𝓁 = 𝛿𝜂
GD

,

with ⊺ denoting the transpose of a matrix  and where 𝜕𝓁∕𝜕𝜂
can be approximated using finite differences. This gradient is then
used in an update formula as 𝜂𝓁+1 = 𝜂𝓁 + 𝛼𝛿𝜂

GD
, where 𝛼 is the

length along the descent direction.
- The second procedure, the Gauss–Newton (GN) method, origi-

nates from a Taylor expansion of  at the first order. For some
increment 𝛿𝜂GN , it yields

 (𝜂𝓁 + 𝛿𝜂GN ) ≈
1
2

(

𝓁 + 𝜕𝓁

𝜕𝜂
𝛿𝜂GN

)

⋅
(

𝓁 + 𝜕𝓁

𝜕𝜂
𝛿𝜂GN

)

≈ (𝜂𝓁) + 𝛿𝜂GN ⋅
(

𝜕𝓁

𝜕𝜂

)⊺

𝓁 + 1
2
‖

‖

‖

‖

𝜕𝓁

𝜕𝜂
𝛿𝜂GN

‖

‖

‖

‖

2

2
.

We then minimise the function 𝛿𝜂GN ↦  (𝜂𝓁 + 𝛿𝜂GN ) to find
the optimal increment, which is equivalent to finding the root of
𝜕

𝜕𝛿𝜂GN
(𝜂𝓁 + 𝛿𝜂GN ) = 0. After some algebraic manipulations, it gives

the linear system
(

𝜕𝓁

𝜕𝜂

)⊺ 𝜕𝓁

𝜕𝜂
𝛿𝜂GN = −

(

𝜕𝓁

𝜕𝜂

)⊺

𝓁 = 𝛿𝜂GD . (18)

The Levenberg–Marquardt algorithm can be seen as an interpolation
between the Gradient Descent and the Gauss–Newton method. It con-
sists in solving, instead of (18), the Levenberg–Marquardt (LM) update
as:
[(

𝜕𝓁

𝜕𝜂

)⊺ 𝜕𝓁

𝜕𝜂
+ 𝜆

]

𝛿𝜂LM = 𝛿𝜂GD , (19)

here  is the identity matrix and 𝜆 is a damping parameter. A large
alue of 𝜆 results in an update closer to the Gradient Descent increment,
hile a small value of 𝜆 makes the update closer to the Gauss–Newton

ncrement. The damping parameter is updated at each iteration. It
sually starts large and becomes slower as the iterations converge
owards the solution. This procedure is used to stabilise the iterations
hen compared to the Gauss–Newton algorithm. The interested reader

an find a more thorough presentation of the Levenberg–Marquardt
lgorithm in [19].

. Numerical procedure: optimisation approach

.1. An optimisation formulation

The previous approach relies on the assumption that the pressure
unction can be analytically continued. Without this assumption, we
an formulate the problem of recovering the surface elevation with bot-
om pressure measurements within an optimisation frame. We resume
he computations from (12). From Bernoulli’s principle, we note that
iven 𝜂, 𝑝s and 𝐵, we can compute the pressure at the seabed using the
ormula:

b(𝑥) = 𝑔𝑑 − 𝐵
2
− 𝑘2

32𝜋2

[

∫
cot

(

𝑘
𝑧′s − 𝑧b

2

)

𝑤′
sd𝑧s

−∫
cot

(

𝑘
𝑧̄′s − 𝑧b − 2i𝑑

2

)

𝑤̄′
sd𝑧s

′
]2

. (20)

This procedure is sketched in Fig. 1 as an input–output process.
 a

4 
Ideally, we would like to find the input leading to 𝑝b(𝜂, 𝑝s, 𝐵) = 𝑝obsb .
owever, this strict equality may be irrelevant (due to noise in the
bservations for instance) and several solutions 𝜂, 𝑝s and 𝐵 may exist
although not being physical). Thus, we will rather minimise some
istance between 𝑝b(𝜂, 𝑝s, 𝐵) and 𝑝obsb , while constraining the fields 𝜂,
s and 𝐵 to respect the equality constraint (10) and the mean-level
ondition for 𝜂. This is summarised as the following minimisation
roblem

min
,𝑝s ,𝐵

 (𝜂, 𝑝s, 𝐵) = ∫

[

𝑝b(𝜂, 𝑝s, 𝐵) − 𝑝obsb
]2

s.t. 𝑖(𝜂, 𝑝s, 𝐵) = 0, 𝑖 = 1, 2, 3.
(21)

here 1, 2 and 3 correspond to (1), (10) and (12), respectively. As
entioned, the bottom pressure 𝑝b is computed from expression (20).

.2. The augmented Lagrangian approach

In this section, we explain the augmented Lagrangian algorithm,
hat we use in order to solve the problem (21). This is an iterative
ethod that starts with an initial guess (𝜂0, 𝑝0s , 𝐵

0) and then, based
n the distance ‖𝑝b(𝜂, 𝑝s, 𝐵) − 𝑝obsb ‖

2
𝐿2()

, will produce a new iteration
𝜂1, 𝑝1s , 𝐵

1) closer to the minimal solution. The procedure is then iter-
ted. The main issue with (21) are the equality constraints that should
e handled with a specific procedure. A broad range of algorithms are
pecifically designed for that, such as the SQP method or the barrier
ethods; see [20] for a detailed review on the numerical algorithms to

olve constrained optimisation problems. In our context, we opted for
he augmented Lagrangian technique because of its ability to transform
onstrained problems into an unconstrained one (with a penalty term).
e introduce in the following this algorithm in a generic framework.
Given functions  and , suppose we would like to solve the generic

ptimisation problem

min
𝑥

 (𝑥) s.t. 𝑖(𝑥) = 0, 𝑖 ∈  . (22)

here  is some subset of N. The augmented Lagrangian algorithm
ffers a way to handle the constraint (𝑥) = 0. It consists in taking an
pproximate Lagrange multipliers 𝜆𝓁𝑖 (in the sense of optimisation) and
oefficients 𝜌𝓁𝑖 to solve the optimisation problem

𝓁 ∈ arg min
𝑥

 (𝑥) +
∑

𝑖∈
𝜆𝓁𝑖 𝑖(𝑥) +

∑

𝑖∈

𝜌𝓁𝑖
2
|𝑖(𝑥)|2.

his procedure turns the constraint problem (22) into an unconstrained
ne, with the same cost function  but adding the scalar product 𝜆𝑖𝑖(𝑥)
nd the quadratic penalisation term 1

2𝜌
𝓁
𝑖 |𝑖(𝑥)|

2. This unconstrained
inimisation problem, which will induce inner iterations, can then

e solved numerically using methods for unconstrained minimisation
roblems ; we used the interior point method as implemented by the
unction fmincon in Matlab (see again [20] for more details on this
ethod). Based on 𝑥𝓁 and for some tolerance 𝜇𝓁 , the multiplier or the

oefficients are updated. For each 𝑖 ∈  , it follows that

- If |𝑖(𝑥)| ≤ 𝜇𝓁 , then 𝜆𝓁+1𝑖 = 𝜆𝓁𝑖 + 𝜌𝓁𝑖 𝑖(𝑥) and 𝜌𝓁+1𝑖 = 𝜌𝓁𝑖 (the
solution respects sufficiently the constraints and the multiplier is
thus updated).

- Else, 𝜆𝓁+1𝑖 = 𝜆𝓁𝑖 and 𝜌𝓁+1𝑖 = 𝜏𝜌𝓁𝑖 for some 𝜏 > 1 (the constraints
are too much violated, so we increase the weight of the quadratic
penalisation).

n analysis of this algorithm and a proof of convergence can be found
n [21].

. Numerical experiments

We now test numerically the two methods (direct and optimisation)
n a common example of surface profile recovery. This example was
lready treated in [10] and appeared as one of the most difficult case
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Fig. 2. Relative errors versus the number of Fourier modes 𝑁 for (a): 𝐵, (b): 𝜂 and (c): 𝑝s. We give the running time (in hours) in panel (d). The circled red lines correspond to
the direct approach. The crossed blue (squared magenta) lines represent the solutions from the optimisation method with a low (high) limit on the number of function evaluations.
considered. We mention that every computations were made on a
processor AMD EPYC 7542 @1.5 GHz with 512 GB of RAM.

5.1. Recovery of capillary waves

When considering a fluid with surface tension 𝛾, the analytic form
of the pressure at the surface is given by the formula

𝑝s ∶= −𝛾𝜅 = −
𝛾𝜂𝑥𝑥

(

1 + 𝜂2𝑥
)3∕2

, (23)

where 𝜅 is the curvature of the interface. It was shown recently [10]
that in this context, recovery of the surface elevation is a challenging
task due to the presence of high-order derivatives in the nonlinear
terms. Nevertheless, we demonstrate the efficiency of both approaches
by considering a gravity-capillary wave with 𝛾 = 1∕3, 𝜎 = −1 and
𝐿∕𝑑 = 6𝜋. The solutions of reference 𝐵∗, 𝜂∗ and 𝑝∗s are computed
from an algorithm adapted from [9] with the total wave height being
fixed at 𝐻∕𝑑 = 0.1. For the initial guess, we use the solutions given
by linear theory for both numerical approaches. In addition, for the
Levenberg–Marquardt algorithm, we used an initial damping parameter
set to 𝜆 = 0.05. The initial parameters for the optimisation algorithm
are set to 𝜆0𝑖 = 0, 𝜌0𝑖 = 10 and 𝜏0 = 2.

First, we let vary the number of Fourier modes 𝑁 and observe
the eventual convergence of the solutions. In Fig. 2, we display with
circled red lines the relative errors on 𝐵, 𝜂 and 𝑝s, as well as the
running time, for the direct approach. We superpose the results from
the optimisation approach with a low (high) limit on the number of
function evaluations in the inner iterations using crossed blue (squared
5 
magenta) lines. All these data are summarised in the rows of Table 1
without noise. As one can notice in Fig. 2, the accuracy of the direct
approach continues to increase with 𝑁 whereas the errors from the
optimisation method slightly grow. However, restricting the number of
function evaluations on the latter allows for faster (and more accurate)
results when the number of modes is small enough. Finally, we notice
that the computation time is in favour of the direct approach by far
(∼100 times faster).

Eventually, we compare the recovered solutions and the reference
values in Fig. 3. Starting from the bottom pressure in panel 3(a), we
obtain the surface elevation and the surface pressure by direct approach
(red crosses) or by optimisation method (blue circles). Both results are
in excellent agreement with the reference value given by the dark green
curves.

5.2. Addition of noise in the measurement

We now test the stability of the method to random perturbations of
the observation signal. For this, we add a white noise to the pressure of
reference 𝑝obsb and try to recover solutions at the surface and Bernoulli’s
constant from this noisy data. This is of significant importance from an
engineering point of view, since most measurements will necessarily
contain noise.

Starting from the pressure field 𝑝obsb without noise, we create a noisy
signal 𝑝̌obsb = 𝑝obsb + 𝜀. Here, the white noise 𝜀 ∼  (0, STD) is designed
using the standard deviation STD = 1

3 𝜖(max(𝑝obsb ) − min(𝑝obsb )), where
𝜖 will be some prescribed error. This yields an error on the signal
which is at most 𝜖(max(𝑝obs) − min(𝑝obs)) with a 99% confidence. In
b b
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Fig. 3. (a): Bottom pressure of reference, computed from expression (20). The dashed–dotted black line represents the hydrostatic value 𝑔𝑑. (b,c): Recovered surface pressure and
surface elevation from direct approach (red crosses) and optimisation approach (blue circles). The reference values are displayed in dark green lines. All computations were made

with 𝑁 = 512.
our experiments, we use 𝜖 = 1%, 5% and 10%. All results are shown
in Table 1. The errors should be understood as the relative error (with
respect to the sup norm) to the expected solutions without noise. As
deduced from these results, the direct approach fails to recover the
surface even with the smallest amount of noise added. In contrast,
the optimisation process produces results in better agreement with the
solution sought. This can also be emphasised from Fig. 4, where we
used 𝑁 = 128 modes and 𝜖 = 5%. We notice that all errors are of the
same magnitude as the noise added to the original signal, exception
made of 𝑝s. However, the computation time needed to solve the inverse
problem also grows significantly although it is not proportional to the
rate of noise added.

6. Discussion

We now discuss the results presented above and draw some con-
clusions from them. We will mainly discuss two aspects: the effect of
noise addition on the two methods, and the comparison of the direct
and optimisation methods from a technical perspective. Both topics will
be the occasion to hint some possible extensions and future research
directions.

6.1. Comments on the noise addition

Implementing noise in our numerical experiments provided some
evidence that analytical continuation of the bottom pressure is a
prerequisite for the direct method to work. Even in the case with
6 
only 1% of error, results in Table 1 show that it renders this method
dramatically ineffective. In contrast, the optimisation procedure shows
a good agreement even in the presence of noise. For instance, the
solution fields 𝜂 and 𝐵 have a relative error of the same magnitude
as the noise added, which demonstrates the robustness of this method.
Actually, this observation seems natural. The way we formulate the
inverse problem using an optimisation frame can be seen as a filtering
for the bottom pressure, since minimising the 𝐿2 distance between
𝑝b(𝜂, 𝑝s, 𝐵) and 𝑝̌obsb corresponds to fitting 𝑝b to some unbiased estimator
of 𝑝̌obsb . However, the surface pressure 𝑝s still shows a non-negligible
deviation from the sought solution. As mentioned in the introduction,
this can be attributed to the ill-posedness of the problem, namely that
any disturbances in the measurements propagate exponentially to the
surface. This is further explained by the nature of the dynamic condi-
tion at the surface and the physical assumptions on 𝑝s. Indeed, capillary
(or flexural) waves involve high-order derivatives of the surface profile
that are numerically problematic to approximate when the solution is
not smooth enough (as it is the case with unfiltered noise). Numerical
errors can thus accumulate since there are no constraint to enforce any
regularity on the surface pressure.

We see several ways to accommodate both methods to the case
where noise is added. Regarding the direct approach, we should focus
on filtering the noise in the bottom measurements before solving the
analytical expressions. This method would require a precise estimation
technique to guarantee the analyticity of the signal, since our experi-
ments show that even the slightest addition of noise breaks the whole
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Table 1
Relative errors on the hydrodynamical variables and computation time, with or without noise, at different
values of 𝑁 and for the direct and optimisation recovery procedures.

(a) |𝐵 − 𝐵∗
|∕|𝐵∗

|.
% noise N Direct Optim.

0

64 1.6407e−06 1.9636e−08
128 2.9192e−07 5.1596e−08
256 3.5804e−08 1.1931e−07
512 4.4756e−09 2.5856e−07

1
64 5.4159e+00 2.4425e−05
128 1.6627e+00 1.0315e−04
256 6.9348e−01 3.8279e−04

5
64 2.1112e+01 8.7488e−04
128 1.1758e+01 2.2192e−04
256 6.6573e+00 1.4831e−04

10
64 9.7216e+00 9.1691e−03
128 1.0309e+01 2.0514e−04
256 1.0938e+01 2.2797e−03

(b) ‖𝑝s − 𝑝∗s ‖∞∕‖𝑝∗s ‖∞.
% noise N Direct Optim.

0

64 3.1851e−02 4.6998e−03
128 9.0898e−03 8.2738e−03
256 1.1527e−04 1.4128e−02
512 1.1342e−04 1.6856e−02

1
64 9.0614e+01 9.5117e−01
128 3.5142e+01 1.5885e+00
256 2.2646e+01 3.3760e+00

5
64 1.5840e+03 4.8191e+00
128 4.3467e+02 2.7363e+00
256 2.4527e+03 2.2819e+00

10
64 7.1252e+03 6.7018e+00
128 1.9906e+04 4.1020e+00
256 3.1396e+04 9.1385e+00

(c) ‖𝜂 − 𝜂∗‖∞∕‖𝜂∗‖∞.
% noise N Direct Optim.

0

64 1.8648e−02 5.8043e−04
128 5.4193e−03 1.3014e−03
256 1.0942e−05 2.0904e−03
512 7.7705e−06 2.8299e−03

1
64 2.7749e+00 1.5490e−01
128 2.6303e+00 1.2423e−01
256 2.5163e+00 8.4355e−02

5
64 3.9779e+00 1.0194e+00
128 3.7786e+00 3.1647e−01
256 6.4795e+00 1.3457e−01

10
64 5.3201e+00 3.0907e+00
128 8.6517e+00 5.4415e−01
256 9.7605e+00 3.5418e−01

(d) Computation time (in hours).
% noise N Direct Optim.

0

64 3.6850e−04 3.8907e−02
128 3.0548e−03 1.2486e−01
256 1.2311e−02 8.9789e−01
512 5.7834e−02 4.9093e+00

1
64 2.1128e−03 3.6985e−01
128 1.1814e−03 1.7341e+00
256 3.9572e−03 4.2470e+00

5
64 1.0649e−01 4.8052e−01
128 1.1955e−01 2.0892e+00
256 1.2354e−02 7.3085e+00

10
64 7.1150e−03 6.1017e−01
128 2.6298e−02 2.5986e+00
256 2.7406e−01 1.3278e+01
recovery process. As for the optimisation method, the main issue in the
presence of noise solely concerns the surface pressure 𝑝s. This can be
solved by including more information to the problem, e.g. some addi-
tional measurements or some knowledge of the physical mechanisms
(the two being not exclusive). In practice, this added information is
simply incorporated in the optimisation problem by adding an extra
constraint. However, the latter could make the problem unsolvable
or at least numerically harder to solve. We illustrate this idea with a
numerical experiment on the same configuration than before where we
added the constraint ‖𝑝s − 𝑝th

s (𝜂)‖2
𝐿2()

= 0 in the optimisation problem
(21) (𝑝th

s being computed from the analytic expression (23)). The results
for 𝑁 = 128 and 𝜖 = 5% are depicted in Fig. 4 with a dashed red curve
when adding this new constraint and in dotted red line without it. As
clear from these panels, knowing the physics at the surface removes
the oscillations due to the noise and allows to recover the solutions
of reference with an excellent agreement. However, this configuration
becomes extremely challenging to solve when considering this addi-
tional constraint, as clear from the computation time taken to solve
this problem (which was 𝑡 ∼ 5.1243 h). Future research should focus
on the nature of information one can add to stabilise the solutions and
lower the complexity.

6.2. Comparison of the direct and optimisation approaches

The principal objective of this work was to solve a nonlinear ill-
posed inverse problem using two distinct approaches and compare
these methods from a numerical perspective. At first glance, we notice
a clear discrepancy in the computation time of both procedures. The
direct approach is indeed much faster than the optimisation method
and we would like to understand the reasons behind this. Let us return
to the intrinsic nature of our direct formulation. By considering the
analytic extension of the bottom pressure, it allows for the deriva-
tion of some implicit formula for the recovery of the surface profile.
Solving these expressions with a root-finding algorithm represents an
efficient way of solving this inverse problem with a system of re-
duced size. Therefore, the direct approach naturally exhibits one of
7 
the fastest way to compute these variables with an excellent accu-
racy. On the other hand, the optimisation procedure (21) requires
to solve a series of unconstrained problem iteratively and adjust the
parameters at each iteration to respect the constraints. This method
acts on a system with a larger size and is strongly dependent on the
number of constraints and optimisation variables. Indeed, we observe
in Fig. 2 (with data summarised in Table 1 with 0% error) a ten-
dency of the errors on the recovered variables to grow as the size
of the system increases, while the direct method takes advantage of
this increased number of variables. This is most probably due to the
complexity of the formulation (i.e. respecting all the constraints si-
multaneously) becoming too arduous. Acceleration of the optimisation
method should be an important topic of research in order to make this
approach really efficient and could be made using different techniques,
such as an increased parallelisation of the computation or via tech-
niques of distributed optimisation ; see [22,23] for more details on this
topic.

Moreover, both methods are interesting in the sense that they can
be generalised fairly easily to more complex situations. Adding a linear
shear current (as done in [8]) and considering overhanging profiles
(as done in [9]) or flexural effects at the surface is straightforward
to implement in both approaches, although it would increase the
complexity of the expressions we used. Extending this work to the
case of unsteady motions is a challenging task that is still lacking
from the literature. It would require in practice to solve the inverse
problem iteratively in time (repeating the current technique at each
time step) while avoiding numerical instabilities (e.g. aliasing) and
following the same branch of solution. In principle, both methods are
applicable when considering this configuration although the running
time of the optimisation problem represents a clear impediment to this
formulation. Finally, extension towards the three-dimensional case is
most certainly the principal reason why we considered the optimisation
approach in the first place. This formulation is indeed well-designed to
handle three-dimensional problems ; see [24–26] for examples of opti-
misation problems involving 3D equations. However, it would require

to solve the equations of motion directly instead of considering the
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Fig. 4. (a): Pressure at the seabed. Ground truth value (computed from (20)) is depicted in blue line. The signal with 5% added noise is represented in dotted red line. (b,c):
Recovered surface pressure and surface elevation without (with) knowledge of the physics at the surface are represented in dotted (dashed) red lines. The reference values are
displayed with blue lines. All computations were made with 𝑁 = 128.
analytical expressions we used in this work that were obtained from a
boundary integral method. Since these expressions are expressed in the
complex plane, their generalisation in 3D is not trivial and represents
a current topic of research. For this reason, the direct approach is less
inclined to be extended to this configuration whereas the optimisation
formulation could present a solution to this long-standing problem.
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