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Analysis of azimuthal magnetorotational instability of rotating magnetohydrodynamic
flows and Tayler instability via an extended Hain-Lüst equation
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We consider a differentially rotating flow of an incompressible electrically conducting and viscous fluid
subject to an external axial magnetic field and to an azimuthal magnetic field that is allowed to be generated
by a combination of an axial electric current external to the fluid and electrical currents in the fluid itself.
In this setting we derive an extended version of the celebrated Hain-Lüst differential equation for the radial
Lagrangian displacement that incorporates the effects of the axial and azimuthal magnetic fields, differential
rotation, viscosity, and electrical resistivity. We apply the Wentzel-Kramers-Brillouin method to the extended
Hain-Lüst equation and derive a comprehensive dispersion relation for the local stability analysis of the flow to
three-dimensional disturbances. We confirm that in the limit of low magnetic Prandtl numbers, in which the ratio
of the viscosity to the magnetic diffusivity is vanishing, the rotating flows with radial distributions of the angular
velocity beyond the Liu limit, become unstable subject to a wide variety of the azimuthal magnetic fields, and
so is the Keplerian flow. In the analysis of the dispersion relation we find evidence of a new long-wavelength
instability which is caught also by the numerical solution of the boundary value problem for a magnetized
Taylor-Couette flow.
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I. INTRODUCTION

A. Standard magnetorotational instability

Due to the rediscovery of Velikhov’s [1] and Chan-
drasekhar’s [2] pioneering results by Balbus and Hawley [3],
the magnetorotational instability (MRI) has aroused strong
interest in astrophysics as a promising mechanism for trig-
gering turbulence in the flow of an accretion disk and for
promoting outward transport of angular momentum, while the
matter accretes to the center [4,5]. In magnetohydrodynamics
(MHD) and plasma physics communities the MRI stimulated
development of new experimental facilities for its detection
in the magnetized Couette-Taylor flow of either liquid metal
(sodium, gallium, and liquid eutectic alloy GaInSn) as in
the Potsdam Rossendorf Magnetic Instability Experiment
(PROMISE) or plasma as in the Madison plasma Couette flow
experiment [6–9].

Let us introduce the cylindrical coordinates (r, θ, z) with
the z axis along the axis of symmetry, along with er, eθ ,
and ez being the unit vectors in the radial, azimuthal, and
axial direction, respectively. For an accretion disk, the Ke-
plerian flow, a cylindrically symmetric flow with the profile
Uθ ∝ r−1/2 of rotational velocity, satisfies the force balance:
U 2

θ (r)/r = �2(r)r = −∇�; � ∝ 1/r. In general, a steady

*Corresponding author: oleg.kirillov@northumbria.ac.uk

rotating flow with the angular velocity �(r)ez, parallel to
the z axis can be considered as a base state. To quantify
the differential rotation the Rossby number is defined as Ro =
1/2(d log �/d log r) = r�′/(2�), where the prime desig-
nates the derivative with respect to r and � > 0 without loss
of generality; see, e.g., Refs. [10,11].

For a nonmagnetized flow of an ideal incompressible fluid,
Rayleigh’s criterion states that the centrifugal instability with
respect to axisymmetric disturbance occurs when the Rossby
number, Ro < −1, which fails to include the Keplerian flow
(Ro = −3/4).

According to Refs. [1–3], a combined effect of fluid ro-
tation and the imposed axial magnetic field is able to raise
the critical Rossby number from −1 to 0 and destabilize the
Rayleigh-stable flows (including the Keplerian one) of an in-
compressible fluid, for which the viscosity and the electric re-
sistivity are neglected. The instability caused by the magnetic
field that has only the axial component B = Bzez is known as
the standard magnetorotational instability (SMRI) [10].

Already in Refs. [1,2] a counterintuitive Velikhov-
Chandrasekhar paradox for SMRI has been pointed out. In
the case of an ideal nonresistive flow, boundaries of the region
of the magnetorotational instability are misplaced compared
to the Rayleigh boundaries of the region of the centrifugal
instability and do not converge to those in the limit of a
negligibly small axial magnetic field [12]. Willis and Barenghi
established that the convergence is possible in the presence
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of viscosity and resistivity [13]. Actually, the transition is
parameterized by the Lundquist number S, so that the
highly conducting fluids characterized by high values of S
have SMRI for Ro < 0 and more resistive fluids with low
Lundquist numbers are Rayleigh-unstable for Ro < −1, see
the short-wavelength analysis in Ref. [14] and its recent con-
firmation by asymptotic and numerical methods in Ref. [15].

B. Helical and azimuthal MRI and Tayler instability

Given an axial magnetic field at some instant, the radial
component is seeded by perturbing the axial field. Once the
radial component arises, with the magnetic field frozen into a
perfectly conducting accretion disk, the radial component is
tilted by the differential rotation to produce azimuthal com-
ponent, and the latter component is constantly stretched with
time, resulting in establishing a strong azimuthal component
[16]. Three-dimensional numerical simulations demonstrated
that the initial weak azimuthal magnetic field tends to be
stretched out to become, at a later stage, dominant over the
initial axial magnetic field [17,18].

Instabilities induced by azimuthal magnetic fields have
been studied already in Refs. [19,20] for the accretion disks
and in a more general setting for a differentially rotating
flow of a perfectly conducting ideal fluid in Refs. [21,22]. A
combined action of the azimuthal and the axial magnetic field,
i.e., the helical field, on the stability of accretion disks in the
ideal MHD setting was addressed in Ref. [23].

In a protoplanetary disk surrounding a young star, the
ionization depends on the radiation from the x rays and cosmic
rays [24], and the temperature of the disk. The midplane of
the accretion disk receives fewer radiation and the cold region
of the disk is only weakly ionized. For the cold and less
radiated parts of the protoplanetary and accretion disks as well
as for the experiments with liquid metals, the effects of both
the viscosity ν and the magnetic diffusivity η are therefore
not ignorable. Because of the low electric conductivity, the
magnetic Prandtl number Pm = ν/η is very small [25] (e.g.,
Pm ∼ 10−5 for liquid sodium, Pm ∼ 10−6 for gallium and
liquid eutectic alloy GaInSn). By contrast, in the hot parts of
the accretion disks, because of the high electric conductivity,
Pm can become very large; see, e.g., Ref. [26] where Pm
ranges from 10−3 to 103.

The case of Pm = 0 is referred to as the inductionless limit
[8,27–29]. Viewing Pm as a ratio of the magnetic and hydro-
dynamics Reynolds numbers, Pm = Rm/Re, one can deduce
that Pm ∼ 10−5 and Rm > 1 implies Re > 105 for the onset
of SMRI that is governed by Rm and S and requires high val-
ues of these numbers for its excitation [30]. On the other hand,
at Re > 105 it is hard to keep the base flow of a liquid metal
laminar in an experimental Couette-Taylor setup, which ex-
plains why SMRI is still not observed in an experiment [4,5].

In 2005 Hollerbach and Rüdiger [31] demonstrated that
the simultaneous application of an axial and an azimuthal
magnetic field in the case of low Pm can significantly reduce
the critical value of the hydrodynamic Reynolds number
at the onset of MRI in the Couette-Taylor flow. The pre-
dicted in Ref. [31] axisymmetric helical MRI (HMRI) has
been successfully detected in subsequent experiments on the
PROMISE facility [32–34].

The azimuthal MRI (AMRI), for which the magnetic
field has only the azimuthal component B = Bθ (r)eθ ,
was predicted to be nonaxisymmetric and feasible for
the parameters of the existing liquid-metal Couette-Taylor
facilities in Ref. [35]. It was detected by PROMISE in 2014
for the azimuthal magnetic field created by an axial current
external to the liquid metal [36]. We notice, however, that the
domains of both AMRI and HMRI plotted in the (Ha, Re)
plane typically have a finite size along the Re axis, which
means that these instabilities can be inhibited at sufficiently
large Reynolds numbers.

Both HMRI and AMRI observed in the liquid metal exper-
iments were reported for the differential flows that are distant
from the Keplerian one. Detection of HMRI and AMRI for
the quasi-Keplerian Couette-Taylor flows is planned in the
upcoming MRI-TI liquid metal experiment in the frame of
the DRESDYN project [9]. This advancement is based on
a stability analysis initiated in Ref. [37] and motivated by
the work by Liu et al. [38] who, using a short wavelength
approximation, identified critical steepnesses of the rotation
profile, which prevent excitation of HMRI for −0.828 ≈ 2 −
2
√

2 < Ro < 2 + 2
√

2 ≈ 4.828. These “Liu limits” were de-
rived in the assumption that the radial profile of the azimuthal
magnetic field is Bθ (r) ∝ r−1 and Pm is very low and thus
excluded HMRI and AMRI of Keplerian flows, characterized
by Ro = −3/4, in the liquid metal experiments where the
azimuthal field is created by an isolated axial current (e.g.,
in PROMISE).

It is known, however, that the azimuthal magnetic field
Bθ (r) ∝ r, corresponding to a homogeneous axial current
density in a conducting fluid, may cause the kink-type Tayler
instability (TI) [39–41], even if the fluid is at rest, as it
was observed in a recent liquid metal experiment [42]. By
combining the field of an external to the fluid current with
the currents through the fluid itself one can create azimuthal
fields with the radial distributions that interpolate between
Bθ (r) ∝ r−1 and Bθ (r) ∝ r. This is the idea behind the design
of the new MRI-TI experimental setup [9].

In view of these considerations, a helical magnetic field
with the arbitrary radial dependence of the azimuthal com-
ponent has been considered in Ref. [37]. To characterize
the magnetic shear, an appropriate magnetic Rossby number,
Rb = r2(Bθ /r)′/(2Bθ ), has been defined [37]. Then Rb = −1
corresponds to Bθ (r) ∝ r−1 and Rb = 0 to Bθ (r) ∝ r. In the
short wavelength approximation it was established that both
the azimuthal and helical MRI are very sensitive to the param-
eter of the magnetic shear, Rb. In particular, it was discovered
that, if the magnetic profile is made slightly shallower than
Bθ ∝ r−1, so as to satisfy the condition Rb � −25/32, the
Keplerian flow invites both the AMRI and HMRI [30,37,43].
Later, these results were confirmed numerically by solving
a boundary value problem for the Couette-Taylor flow with
the internal and external currents [8,44]. Numerous previous
studies, e.g., Refs. [10,21,22,27,28,31,35,38,45], overlooked
this important result because they were restricted to the
current-free field Bθ ∝ r−1 with Rb = −1.

C. The Hain-Lüst equation and its extensions

The HMRI and the AMRI were addressed for
axisymmetric and nonaxisymmetric perturbations in the
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short-wavelength regime by the traditional Wentzel-Kramers-
Brillouin (WKB) method [10,46] and within the geometrical
optics [21] approximation [30,37,43,45,47,48]. The advantage
of the latter is a possibility of a systematic derivation of
asymptotic equations of different order controlled by a
universal small parameter.

In Ref. [49] Hain and Lüst derived an ordinary differential
equation of the Sturm-Liouville type [50] for the radial La-
grangian displacement to determine the growth rates of MHD
instabilities with respect to isothermal perturbations in a dif-
fuse linear pinch. Since then the Hain-Lüst equation (follow-
ing from the Frieman-Rotenberg equation [51]) is widely used
in the studies of local and global instabilities of cylindrical
plasma equilibria [52–54]. In particular, it was established that
the standard WKB analysis applied to the Hain-Lüst equation
produces the correct local dispersion relation compared to that
following from the WKB analysis of the original system of
first order MHD equations; see, e.g., the discussion on page
103 in Ref. [53].

Motivated by this advantage Zou and Fukumoto [55] per-
formed a rigorous derivation of the Hain-Lüst equation for a
differentially rotating ideal MHD fluid in a cylindrical config-
uration and subjected to an azimuthal magnetic field. After the
substitution of the WKB form of the radial solution into the
result they found a new local dispersion relation that contained
the dispersion relation of Refs. [21,22] as a particular case in
the limit of short axial wavelengths.

Compared to Refs. [21,22], the dispersion relation by Zou
and Fukumoto contained new terms affecting instabilities
with respect to nonaxissymmetric perturbations [55]. By that
reason, it is extremely interesting to apply this approximation
scheme to the case of nonideal MHD and derive a comprehen-
sive local dispersion relation allowing for differential rotation,
viscosity and resistivity and thus applicable to the studies of
HMRI, AMRI, and TI. This is the goal of the present paper.
In it the extended Hain-Lüst equation serves as a basis for the
linear stability analysis of AMRI, HMRI and TI both in the
limit of Pm → 0 and in the case of general Pm and Rb.

D. Overview of the article

In Sec. II we present the base state and the linearized MHD
equations and derive our version of the Hain-Lüst differential
equation for the incompressible fluid with allowance for dif-
ferential rotation, viscosity, and electrical resistivity.

In Sec. III we apply the Wentzel-Kramers-Brillouin
(WKB) method to the extended Hain-Lüst equation and ob-
tain the comprehensive dispersion relation in the short radial
wavelength limit.

In Sec. IV we check that our dispersion relation restores the
known results for the SMRI and the HMRI, when restricted to
axisymmetric disturbances.

In Sec. V we derive the dispersion relation for the case of
purely azimuthal magnetic field and arbitrary Pm. Then we
focus on the nonaxisymmetric AMRI at finite and vanishing
magnetic Prandtl numbers. In the weak magnetic field limit
we find that the Rayleigh criterion decides the instability. In
the case of sufficiently strong azimuthal magnetic field we
first deal exclusively with two extreme modes of kr → 0 and
kr → ∞, being featured by the axial wave number k. For the

Keplerian flow, the short axial-wavelength mode (kr → ∞)
is excitable for Rb > −25/32, in accordance with the earlier
works [30,37]. We find that the long axial-wavelength mode
(kr → 0) is excitable for Rb < −1/4 even when the flow is
nonrotating. These findings are supported by computation of
the growth rates optimized over radial and axial wavelengths
and by presenting the evolution of the stability diagrams in the
(Ro, Rb) plane as the radial wave number varies from small to
large values.

In Sec. VI we find that in the limit of kr → 0, an upper
limit of the value of qr, where q is the radial wave number,
is placed for the instability to occur. Then we analyze numer-
ically our WKB dispersion relation with a reasonable restric-
tion on the radial wave number q. This results in the stability
diagrams well compared with that of the global numerical
analysis of Ref. [56] and local analysis of Refs. [30,47] for
various values of the magnetic Prandtl number.

Finally, in Sec. VII we complement the local stability
analysis with the global stability analysis of the original MHD
system equipped with boundary conditions that we solve by
the pseudospectral method [57–59] to validate the theory.

II. EXTENDING THE HAIN-LÜST EQUATION

We consider the linear stability of a cylindrically symmet-
ric rotating flow, of an incompressible viscous fluid with finite
electric conductivity, to three-dimensional disturbances. The
basic state is a rotating flow in equilibrium with the velocity
field U = U (r), characterized by the angular velocity �(r),
in the steady magnetic field B = B(r), of the same symmetry,
with the azimuthal and the axial components rμ(r) and Bz(r),
respectively:

U = r�(r)eθ , B = rμ(r)eθ + Bzez. (1)

The constant axial component of the magnetic field can be
assumed to be externally imposed whereas the azimuthal
component can be thought of as created by axial electric
currents both external to the fluid and running through the
fluid itself [29,44].

The velocity u, the magnetic field b, and the total pressure
p are partitioned into the basic flow, and the disturbance as

u = U + ũ, b = B + b̃, p = P + p̃. (2)

The Navier-Stokes and the induction equations linearized in
the disturbance (ũ, b̃, p̃) are

∂ũ
∂t

+ (ũ · ∇)U + (U · ∇)ũ

= − 1

ρ
∇ p̃ + 1

ρμ0
(B · ∇)b̃ + 1

ρμ0
(b̃ · ∇)B + ν∇2ũ, (3)

∂ b̃
∂t

= ∇ × (U × b̃) + ∇ × (ũ × B) + η∇2b̃, (4)

∇ · ũ = 0, (5)

∇ · b̃ = 0, (6)

where μ0, ν, and η represent the magnetic permeability, the
kinematic viscosity, and the magnetic diffusivity, respectively.
We assume that μ0, ν, and η are all constant [43].
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Owing to the steadiness and to the symmetries with respect
to translation along and rotation about the z axis, we pose the
disturbances in the normal-mode form

ũ, b̃, p̃ ∝ exp[λt + i(mθ + kz)]. (7)

The azimuthal wave number m takes an integer value, the axial
wave number k is taken to be a real number, and λ is the
eigenvalue to be calculated. Substituting (7) into (3)–(6) yields
a coupled system of eight ordinary differential equations for
functions of r.

With a view to incorporate only the leading-order effect of
short-wave radial disturbances under the assumption of ν and
η being small, we may simply replace −∇2 with |k|2 = k2 +
q2 + m2/r2, where q(r) is the radial wave number. Indeed, if
the disturbance is thought to be

∝ exp[λt + i(mθ + kz)]c(r) exp

{
i
∫

q(r) dr

}
and L is the characteristic length, then c′(r) ≈ c(r)/L
and c′′(r) ≈ c(r)/L2, and q′(r) ≈ q(r)/L. For q(r)L 
 1,
c(r)q2(r) becomes the leading-order term, and we can write

−∇2 ≈ q2(r) + k2 + m2/r2 (8)

in the dissipation terms. This procedure amounts to discarding
terms in the short wavelength regime, and should be justified
a posteriori.

Within the assumptions made, we write the resulting equa-
tions in the matrix form for the vector function

ξ = (ũr, ũθ , ũz, b̃r, b̃θ , b̃z, p̃)

as

Mξ = 0 (9)

with the matrix operator

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̃ν −2� 0 − iF
ρμ0

2μ

ρμ0
0 1

ρ
d
dr

1
r

d
dr (r2�) λ̃ν 0 − 2μ+r dμ

dr
ρμ0

− iF
ρμ0

0 1
rρ im

0 0 λ̃ν 0 0 − iF
ρμ0

1
ρ

ik

−iF 0 0 λ̃η 0 0 0

r dμ

dr −iF 0 −r d�
dr λ̃η 0 0

0 0 −iF 0 0 λ̃η 0
1
r + d

dr
im
r ik 0 0 0 0

0 0 0 1
r + d

dr
im
r ik 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

where F = mμ + Bzk [54],

λ̃ν = λ + im� + ων, λ̃η = λ + im� + ωη (11)

and ων = |k|2ν, ωη = |k|2η [30].
The assumption (8) allows us to reduce the system (9) to

a single ordinary differential equation of second order, gov-
erning the radial Lagrangian displacement of a fluid particle,
an equivalent to the famous Hain-Lüst equation [49], which
is a Sturm-Liouville equation with coefficients depending ra-
tionally on the eigenvalue parameter λ [50]. Note that without

(8) the resulting differential equation would be of order higher
than 2.

For the ideal MHD, the magnetic field is frozen into the
fluid and the Lagrangian variable helps to construct the iso-
magnetovortical [60] perturbations, with respect to which the
stability analysis is typically made. This is no longer true for
the nonideal case. We find that, with ν and η included, the
following “quasi-” radial displacement ξr = ur/λ̃η, connected
with the radial component ũr , is advantageous for simplifying
the resulting equation. This differs from the radial Lagrangian
displacement by the ωη term in λ̃η.

Therefore, we introduce a dependent variable χ =
−rur/λ̃η, with the minus sign chosen for convenience, and
the following notation:


 = λ̃ν + F 2

λ̃ηρμ0
, (12)

h2 = k2 + m2

r2
. (13)

With this, as we show in detail in Appendix A, the system
(9) collapses into a single second-order ordinary differential
equation for χ (r):

d

dr

(
f

dχ

dr

)
+ s

dχ

dr
− gχ = 0, (14)

where

f = λ̃η


h2r
, s = im(λ̃ν − λ̃η )

h2r
�′,

g = d

dr

{
imλ̃η

h2r2

[(
1 − λ̃ν

λ̃η

)
r�′ + 2

(
� − iFμ

ρμ0λ̃η

)]}
+E λ̃η


r
−
(

� − iFμ

ρμ0λ̃η

)
×2m2λ̃η


h2r3

[(
1 − λ̃ν

λ̃η

)
r�′ + 2

(
� − iFμ

ρμ0λ̃η

)]
, (15)

and the prime denotes the derivative with respect to r. The
expression for the coefficient E is given by formula (A4) in
Appendix A.

Equation (14) with the coefficients (15) is thought of as an
alternative version of the Hain-Lüst equation [49,50] for the
incompressible fluid extended with allowance for the effect of
differential rotation, viscous dissipation, and magnetic diffu-
sion. To the best of our knowledge in this generality it has
not been previously reported in the literature. With ν = 0 and
η = 0, it reduces to the extended Hain-Lüst equation for the
ideal incompressible MHD flow in differential rotation [55].
If, additionally, � = 0, it exactly coincides with the classical
Hain-Lüst equation for the nonrotating ideal incompressible
MHD fluid in cylindrical configuration [52–54].

III. DISPERSION RELATION IN SHORT RADIAL
WAVELENGTH APPROXIMATION

Following Refs. [52–54] we apply the WKB ap-
proximation to (14) by introducing the ansatz χ (r) =
c(r) exp[i

∫
q(r) dr] and assuming that the radial wavelength

is very short, i.e., q(r)L 
 1, where L is the length scale
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for the radial inhomogeneity. This results in the algebraic
dispersion relation

(h2 + q2)λ̃2
η


2 + 4k2

(
�λ̃η − iFμ

ρμ0

)
×
[
�Ro(ωη − ων ) +

(
�λ̃η − iFμ

ρμ0

)]

+ 4
h2λ̃η

{(
�2Ro − μ2

ρμ0
Rb

)

+ imr

4

d

dr

[
2
(
�λ̃η − iμF

ρμ0

)+ (ωη − ων )r�′

h2r2

]}
= 0,

(16)

where we have introduced the Rossby number Ro and the
magnetic Rossby number Rb by [30,37,45]

Ro = 1

2

r

�
�′, Rb = 1

2

r

μ
μ′. (17)

In the ideal case when ων = 0 and ωη = 0 the dispersion
relation (16) reduces to that of Ref. [55] that, in its turn,
reduces to the ideal dispersion relation derived by Ogilvie and
Pringle [22] and Friedlander and Vishik [21] as well as to the
ideal versions of the dispersion relation of Refs. [30,37,46] in
the limit of large axial wave numbers, k → ∞.

Applying the WKB approximation to the extended
Hain-Lüst equation for the radial Lagrangian displace-
ment rather than to the coupled system of the ordinary
differential equations (9) we obtain an additional term
imr
4

d
dr [

2(�λ̃η− iμF
ρμ0

)+(ωη−ων )r�′

h2r2 ] in the resulting dispersion rela-
tion (16). We notice that the axisymmetric mode (m = 0)
remains intact since this term is irrelevant. However, it can im-
prove the prediction accuracy in the case of nonaxisymmetric
perturbations with long axial wavelength.

For our purpose of stability analysis, it is expedient to
define two kinds of Alfvén frequency ωA and ωAθ , along with
their ratio β representing the helical geometry of the magnetic
field, by [30]

ωA = kBz√
ρμ0

, ωAθ = μ√
ρμ0

, β = ωAθ

ωA
. (18)

In addition, we introduce three dimensionless parameters,
namely, the magnetic Prandtl number Pm, the Reynolds num-
ber Re and the Hartmann number Ha by [30]

Pm = ων

ωη

, Re = �

ων

, Ha = ωA√
ωνωη

. (19)

The dispersion relation for nondimensional variables, with the
derivative term in (16) being expanded out, leads to

(
1
2 + Ĥa
2
)2

+ 4
ĥ2(
1
2 + Ĥa

2
)

ĥ2 + q̂2
(Re2PmRo − β2Ha2Rb)

+ 4im(
1
2 + Ĥa
2
)

ĥ2 + q̂2

[
ReRo

√
Pm(
2 + imRe

√
Pm)

− i(2mβ + 1)βHa2Rb + (iĤaβHa − Re
√

Pm
2)
k̂2

ĥ2

+ RoRe(1 − Pm)

(
Ro − k̂2

ĥ2

)]
+ 4α2{(Re
2

√
Pm − iĤaβHa)[Re
2

√
Pm − iĤaβHa

+ RoRe(1 − Pm)]} = 0, (20)

where


1 = λ

�
Re

√
Pm + imRe

√
Pm +

√
Pm,


2 = λ

�
Re

√
Pm + imRe

√
Pm + 1√

Pm
,

Ĥa = Ha(1 + mβ ),

k̂ = kr, q̂ = qr, ĥ = hr, α2 = k̂2

ĥ2 + q̂2
. (21)

In the rest of the paper, this form of the dispersion relation
plays the decisive role for determining the instability criteria
and for calculating the growth rates.

IV. AXISYMMETRIC PERTURBATIONS

To begin with, we confirm that (20) and (21) reproduce the
known results in the axisymmetric case.

A. Standard MRI in the ideal MHD and beyond

For axisymmetric perturbations (m = 0) and purely axial
magnetic field (β = 0) the dispersion relation (20) simplifies
as follows:

Pm2 λ4

�4
+ 2

(Pm + 1)Pm

Re

λ3

�3

+
[

4Pm2α2(Ro + 1) + 2(Ha2 + 1)Pm + (Pm + 1)2

Re2

]
λ2

�2

+ 2

[
4Pmα2(Ro + 1)

Re
+ (Ha2 + 1)(Pm + 1)

Re3

]
λ

�

+ 4α2 Ha2PmRo + Ro + 1

Re2 + (Ha2 + 1)2

Re4 . (22)

Expressing Ha, Re, and Pm in terms of the Alfvén, viscous,
and resistive frequencies according to (19) and then setting
ων = 0 and ωη = 0 we arrive at the well-known dispersion
relation of the standard MRI of the ideal MHD [3,11,55]:

λ4 + 2
[
2α2�2(Ro + 1) + ω2

A

]
λ2 + 4α2�2Roω2

A + ω4
A = 0,

(23)
from which Ro < 0 follows as a necessary condition for
the standard magnetorotational instability, established first in
Refs. [1,2], and Ro < −1 as a criterion for the Rayleigh
centrifugal instability in the absence of the magnetic field. The
Velikhov-Chandrasekhar paradox is that the exact criterion for
SMRI produced by (23)

Ro < − ω2
A

4α2�2

does not tend to the Rayleigh criterion as ωA → 0, [11,12].
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Willis and Barenghi [13] realized, using numerical compu-
tation, that viscosity and resistivity are necessary to connect
the two criteria. To show this, we require negativity of the
free term in the dispersion relation (22). which yields the
generalized criterion for SMRI of the nonideal MHD [10,14]:

Ro < −1 + 1
4α2

(
Ha2

Re + 1
Re

)2
Ha2Pm + 1

.

Introducing the magnetic Reynolds number Rm = PmRe and
the Lundquist number S2 = Ha2Pm we rewrite it as

Ro < −1 + 1
4α2

(
S2

Rm + 1
Re

)2
S2 + 1

,

which in the limit of Re → ∞ and Rm → ∞ reduces to the
condition [14]

Ro < − 1

S2 + 1
, (24)

recently confirmed by the asymptotic and numerical analysis
of Deguchi [15]. At S = 0 the inequality (24) yields the
Rayleigh criterion Ro < −1 whereas for S → ∞ it restores
the Velikhov-Chandrasekhar condition Ro < 0.

B. Helical MRI in the limit Pm → 0

Now we revisit the axisymmetric (m = 0) HMRI occurring
in the presence of both azimuthal and axial components of the
magnetic field B = rμ(r)eθ + Bzez.

It is well known that [8] “AMRI, HMRI and TI survive also
at low magnetic Prandtl numbers. One finds for their lines of
neutral stability convergence in the ( Ha/Re) coordinate plane
for decreasing magnetic Prandtl number Pm → 0, which can
also be obtained with the inductionless approximation of the
MHD equations for Pm = 0.”

By that reason we can consider (20) in the limit of Pm → 0
and solve it for the eigenvalue as [30]

λ

�
= − 1

Re
+ Ha2

Re
(2α2β2Rb − 1)

± 2α

Re
[β2Ha4(1 + α2β2Rb2) − Re2(1 + Ro)

+ iβHa2Re(2 + Ro)]1/2. (25)

At large values of Re, (25) is expanded as

λ

�
≈ ±2iα

√
1 + Ro +

{
− 1 + Ha2

[
2α2β2Rb − 1

± (2 + Ro)αβ√
1 + Ro

]}
1

Re
, (Ro �= −1),

λ

�
≈ ±2αHa

√
iβ

1√
Re

+ (−1 − Ha2 + 2α2β2Ha2Rb)
1

Re
,

(Ro = −1). (26)

From the zeroth-order term in (26), Ro < −1 is sufficient
for instability and so is Ro = −1 unless Ha = 0 or β = 0.
The remaining task is classification for the case of Ro > −1.
Equation (26) tells that the growth rate, if it is positive,
increases with |Ha|.

For 1 � Ha � Re and Ro �= −1, (26) reads for the growth
rates [30]


(λ)

�
=
(

2α2β2Rb − 1 ± αβ
Ro + 2√
1 + Ro

)
N− 1

Re
, (27)

where N = Ha2/Re is known as the Elsasser number [30] and

(·) designates the real part. The coefficient at N is a quadratic
equation with respect to αβ. Its discriminant is

D = 8Rb + (Ro + 2)2

Ro + 1
.

Therefore, for Rb < 0 the coefficient at N can be positive, if
D > 0, which yields [30,37]

Rb > −1

8

(Ro + 2)2

Ro + 1
(28)

as a necessary condition for instability.
Note that when Rb < 0 and Re → ∞ the maximum of the

growth rate, as a function of αβ, turns out to be


(λ)

�
= − DN

8Rb
and is attained at

αβ = ∓ Ro + 2

4Rb
√

Ro + 1
.

Correspondingly, when Rb � −1/2 the instability occurs in
the region [30,37]

Ro ∈ [−1, 2(−
√

2
√

2Rb2 + Rb − 1 − 2Rb)]

∪[2(
√

2
√

2Rb2 + Rb − 1 − 2Rb),+∞], (29)

and when −1/2 < Rb < 0 the instability occurs in the region

Ro ∈ [−1,+∞]. (30)

In particular, for Rb = −1 the critical Rossby numbers are
Roc = 2(1 ± √

2) at αβ = ±1/
√

2, and thus the upper and
lower Liu limits are recovered [10,11,38].

V. NONAXISYMMETRIC PERTURBATIONS

Hereafter we limit ourselves to the magnetic field that has
only the azimuthal component B = rμ(r)eθ . Let

Haθ = ωAθ√
ωνωη

(31)

be the azimuthal Hartmann number.
We first substitute β = Haθ /Ha into (20) and then take

the limit Ha → 0. As a result, we get the dimensionless
dispersion relation of AMRI for arbitrary Pm:(


1
2 + m2Ha2
θ

)2
+ 4

ĥ2
(

1
2 + m2Ha2

θ

)
ĥ2 + q̂2

(
Re2PmRo − Ha2

θRb
)

+ 4im
(

1
2 + m2Ha2

θ

)
ĥ2 + q̂2

[
ReRo

√
Pm(
2 + imRe

√
Pm)

− 2 im Ha2
θRb + (imHa2

θ − Re
√

Pm
2
) k̂2

ĥ2
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+ RoRe(1 − Pm)

(
Ro − k̂2

ĥ2

)]
+ 4α2

{(
Re
2

√
Pm − imHa2

θ

)[
Re
2

√
Pm − imHa2

θ

+ RoRe(1 − Pm)
]} = 0. (32)

Taking the limit of Pm → 0 in (32), we find

λ̂2 + 4̂λ

ĥ2 + q̂2

[
Ha2

θ

(
2m2Rb − ĥ2Rb − k̂2m2

ĥ2

)

+ imRe(Ro + 1)

(
Ro − k̂2

ĥ2

)]
+ 4α2

(
Re − imHa2

θ

)(
Re − imHa2

θ + ReRo
) = 0, (33)

where

λ̂ = 1 + Ha2
θm2 + λRe

�
+ imRe.

A. Weak field

To examine the instability when magnetic field is weak, we
express the solution of (33) in powers of small parameter Haθ .
Then its leading-order term reads

λ

�
= − 1

Re
− im

[
1 + 2(1 + Ro)

ĥ2 + q̂2

(
Ro − k̂2

ĥ2

)]

± 2

√√√√−α2(1 + Ro) − m2(1 + Ro)2

(̂h2 + q̂2)2

(
Ro − k̂2

ĥ2

)2

+ O(Haθ ). (34)

The radicand should be positive in total for instability. The
first term in the radicand −α2(1 + Ro) becomes positive for
Ro < −1 and the second one is definitely nonpositive. This
nonpositive term has the effect of decreasing the growth rate.
In particular, setting m = 0 in (34) yields

λ

�
= ±2αi

√
1 + Ro − 1

Re
. (35)

From (35) it follows that instability requires [30]

Ro < Roc = −1 − 1

4α2Re2 .

Compared with the ideal hydrodynamics, for which the criti-
cal Rossby number is Roc = −1, the critical Rossby number
is lowered by 1/(4α2Re2) and the maximum growth rate is
decreased by 1/Re due to viscosity.

When Ro > −1, to which the Keplerian flow (Ro = −3/4)
belongs, the nonaxisymmetric as well as the axisymmetric
modes decay as λ/� ≈ −1/Re.

B. Strong field

We turn to the case of a strong magnetic field. The
Reynolds number is assumed to be large. The axial wave
number k̂ is an important parameter for determining the
maximum growth rate and the instability region.

Figure 1 shows the growth rate given by Eq. (33) as
a function of k̂ for different values of Rb. We fix m = 1,
Ro = −3/4, and q̂ = 0, because numerically the modes of
q̂ = 0 exhibit the fastest growth. We observe that at around
Rb = −1/4, there is some finite k̂ at which the growth rate
takes the maximum value. When Rb is smaller than −1/4, the
fast growth rate gives way to the k̂ = 0 mode at Rb = −1.

-10 -5 0 5 10
k

-0.2

0.5

1.2

1.9

2.6

Rb = −1
Re(λ)

Ω

-10 -5 0 5 10
k

0.3

0.6

0.9

1.2

Rb = −1/2

Re(λ)
Ω

-10 -5 0 5 10
k

0

0.3

0.6

0.9

Rb = −1/4

Re(λ)
Ω

-10 -5 0 5 10
k

-1

0

1

2

3

Rb = 1
Re(λ)

Ω

FIG. 1. The growth rate Re(λ)/� given by (33) versus the dimensionless axial wave number k̂ = kr for Re = 100, Haθ = 10, m = 1, q̂ =
0, Ro = −3/4. From upper left to lower right, Rb is varied from −1 to 1. As Rb increases, the value of k̂ corresponding to the maximum
growth rate increases from k̂ = 0 to finite but nonzero value and ultimately this k̂ → ∞.
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-1 -0.5 0 0.5 1
Haθ

0

0.5
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FIG. 2. The growth rate Re(λ2) of (36) versus Haθ when Re = 104, m = 1, k̂ = q̂ = 0, Ro = −3/4, and Rb = −1. The right panel is the
close-up view of the left one near Haθ = 0, demonstrating a certain strength of magnetic field needed for instability.

When Rb is increased above −1/4 by a certain amount, the
maximum growth rate is attained in the limit of k̂ → ∞.

1. The limit ̂k → 0

The observations described above suggest us to examine
closer the limit of k̂ → 0, which means letting α → 0 and
ĥ → m in (33). In this limit the roots of (33) at Re 
 1 take
the form

λ1

�
= −im − (1 + Ha2

θm2
) 1

Re
,

λ2

�
= −im

[
1 + 4Ro(1 + Ro)

m2 + q̂2

]
−
[

1 + Ha2
θm2

(
1 + 4Rb

m2 + q̂2

)]
1

Re
. (36)

A glance at (36) shows that the axisymmetric mode (m =
0) is excluded from the unstable ones and the growth rate

(λ1) is always negative. The growth rate 
(λ2) is positive
provided that

Rb < −1

4
(m2 + q̂2) and Ha2

θ >
1

m2
( 4|Rb|

m2+q̂2 − 1
) . (37)

Figure 2 displays the growth rate 
(λ2) as a function
of Haθ when Re = 104, m = 1, k̂ = q̂ = 0, Ro = −3/4, and
Rb = −1. The left panel shows that the growth rate increases
with Haθ ; the right panel is the close-up view near the ori-
gin. We recognize that the small but nonzero value |Haθ | =
1/

√
3 ≈ 0.5774 is necessary for the onset of instability.

Note that rather than Ro, it is now Rb that is tied with the
instability and the negative value of dμ/dr is required. The
maximum growth rate is attained at q̂ = 0.

When Rb = −1, the m = ±1 modes are the only possible
modes for instability.

When m = ±1 is fixed, Rb < −1/4 is necessary for the
instability of the k̂ = 0 mode.

It is remarkable that the instability exists, beyond the
restriction of the Liu limit, for arbitrary Rossby number Ro.
However, we should be cautious about this result, because the
modes of q̂ = 0 lie outside the regime of validity of the radial
WKB approximation. Later in the article, we argue about the
limitation on q̂.

2. The limit ̂k → ∞
In the limit k̂ → ∞, where q̂2 is replaced by k̂2/α2 − k̂2 −

m2 (0 � α � 1), the roots of (33) take the form [30,43]

λ1,2

�
= NA(2α2Rb − m2) − im − 1

Re

± 2α
{
N2

A(m2+α2Rb2) + imNA(2 + Ro) − 1−Ro
} 1

2 ,

(38)

where NA = Ha2
θ /Re is the Elsasser number for the azimuthal

magnetic field [30,43].
By expanding the eigenvalues (38) to first order in 1/Re

we get [28,30]

λ1,2

�
= −im ± 2α

√
−(1 + Ro)

+ NA

[
2α2Rb − m2 ± αm(2 + Ro)√

1 + Ro

]
− 1

Re
. (39)

When Ro < −1, the instability occurs with the growth rate

(λ)/� ≈ 2α

√−(1 + Ro). This mode pertains to the classi-
cal Rayleigh instability since no magnetic field is required.

When Ro > −1, the instability criterion becomes

−n2 + |n| 2 + Ro√
1 + Ro

+ 2Rb > 0,

and α2Ha2
θ >

√
1 + Ro

(2Rb − n2)
√

1 + Ro + |n|(2 + Ro)
,

(40)

where n = m/α. If we choose that, e.g., Rb = 0, m = 1, and
α = 1, then |Haθ | ≈ 0.8165 is the onset of AMRI at the
Keplerian Ro = −3/4 as shown in Fig. 3.

The left-hand side of the first of the inequalities (40) is a
quadratic polynomial with respect to the real-valued number
m. Hence, the discriminant of this polynomial

D = (2 + Ro)2

1 + Ro
+ 8Rb > 0

in order that the polynomial can take positive values. This
yields the familiar [30,37] necessary condition for instability
(28). For instance, for Keplerian flow Ro = −3/4 in (28) the
inequality Rb > −25/32 is necessary for instability [30,37].
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FIG. 3. The growth rate Re(λ) to Haθ when Re = 104, m = 1, k̂ → ∞, α = 1, Ro = −3/4, and Rb = 0 according to (38). The left panel
shows that large Haθ increase the growth rate, and the right panel is the amplification of the left one when Haθ is small, which demonstrates
that a certain strength of magnetic field is needed for instability.

The first inequality in (40), when Rb � n2/2 − n, is written
for Ro as

−1 < Ro < −2 + n2 − 2Rb −
√

(n2 − 2Rb)2 − 4n2

2n2(n2 − 2Rb)−1

or Ro > −2 + n2 − 2Rb +
√

(n2 − 2Rb)2 − 4n2

2n2(n2 − 2Rb)−1
, (41)

and when Rb > n2/2 − n, as

Ro > −1. (42)

When n = ±√−2Rb, the domain (41) reduces to (29), which,
at Rb = −1 takes the form

−1 < Ro < 2 − 2
√

2 or Ro > 2 + 2
√

2,

where 2 − 2
√

2 and 2 + 2
√

2 are the lower and the upper Liu
limits, respectively [38].

3. Growth rate optimized by ̂k and q̂

In the long-wavelength limit of k̂ → 0, Rb < −1/4 is
necessary for the instability of m = 1 mode as shown by (37),
while in the short-wavelength limit of k̂ → ∞, the condition
Rb > − 1

8
(Ro+2)2

Ro+1 given by (28) is necessary for the instability.
Since the latter one overlaps with the former one, we conclude
that for each value of Rb there exist wave numbers k̂ and q̂
such that the mode with m = 1 is unstable.

Either the mode of k̂ → 0 or k̂ → ∞ dominate in large
range of Rb, and the maximum growth rate is attained at a
finite value of k̂ for every particular value of the magnetic
Rossby number, Rb, as illustrated in Fig. 4. In this figure
the optimized with respect to k̂ growth rate is plotted against
Rb for Re = 104, Haθ = 100, m = 1, and Ro = −3/4 and
q̂ = 0 (upper panel) and q̂ = 1 (lower panel). We observe the
crossover of the k̂ = 0 mode and the k̂ = ∞ mode. The range
of large negative values of Rb is dominated by the k̂ = 0 mode
and the one of large positive values of Rb is dominated by the
k̂ → ∞ mode.

4. Evolution of AMRI region in the (Ro, Rb) plane with ̂k

In order to understand how the instability region evolves
from that described by (37) at k̂ → 0 to (41) at k̂ → ∞ we
plot the growth rate of the dispersion relation (32) in the

projection to the (Rb, Ro) plane; see Fig. 5. The results are
presented over a growing set of axial wave number k̂ for
Re = 104, Haθ = 102, Pm = 10−6, q̂ = 1, and m = 1.

It is clearly seen that already for k̂ > 1.8 the neutral
stability curve bounding the stability domain (shown in white
in Fig. 5) is close to Rb = − 1

8
(Ro+2)2

Ro+1 corresponding to the
limit of Pm → 0. Equivalently, the instability domain is close
to (41).

-2 -1 0 1 2
Rb

0

2.5

5
Re(λ)

Ω

k → 0
k → ∞
Maximum

-2 -1 0 1 2
Rb

0

1

2
Re(λ)

Ω

k → 0
k → ∞
Maximum

FIG. 4. The growth rate to magnetic Rossby number Rb for Re =
104, Haθ = 100, m = 1, Ro = −3/4, and q̂ = 0 (upper panel) or q̂ =
1 (lower panel) according to (33). The solid line is k̂ = 0 mode, the
dotted one is the k̂ → ∞ mode, and the dashed line stands for the
growth rate maximized over k̂, whose left part tends to the k̂ = 0
mode and the right part tends to the k̂ = ∞, α = 1 mode.
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FIG. 5. Growth rate calculated with the use of the Hain-Lüst dispersion relation (32) in projection to the Rossby plane (Rb, Ro) for
Re = 104, Haθ = 102, q̂ = 1, m = 1, and (from upper-left to lower-right panel): k̂ = 0.01, 0.4, 0.7, 0.8, 0.9, 1, 1.1, 1.3, 1.8, 2.5, 5, and 10. The
white domains represent stability.

At the lower values of k̂ the instability domain splits into
two parts, one of which becomes dominant at k̂ = 1.3 stretch-
ing along the Rb axis at k̂ = 1 and finally bifurcating into the
instability domain corresponding to large negative values of
Rb and practically not depending on Ro, in agreement with
the criterion (37).

Below we demonstrate a similar transition for the domain
of Tayler instability.

C. Tayler instability in the limit of Pm → 0

Tayler [39,41] established that an ideal nonrotating per-
fectly conducting fluid in an azimuthal magnetic field is stable

against nonaxisymmetric perturbations with the azimuthal
wave number m = 1 under the condition

d

dr

[
rB2

θ (r)
]

< 0. (43)

Recalling the definition of the magnetic Rossby number
(17) and taking into account that Bθ (r) = rμ(r), the Tayler
stability criterion for m = 1 takes the form

Rb < − 3
4 , (44)

which means that the azimuthal magnetic field Bθ (r) ∼ r
created by a current passing through a conducting fluid and
corresponding to Rb = 0 is unstable.
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Reference [41] numerically predicted the Tayler instability
(TI) caused by the field with Rb = 0 to exist also in the limit
of Pm → 0, which allowed for its recent observation in the
experiments with liquid metals [42].

Using the geometrical optics stability analysis Kirillov
et al. [30] extended the criterion for the onset of the Tayler
instability to the case of arbitrary m � 1:

Rb >
m2

4α2
− 1, (45)

where α = k̂2/(̂k2 + q̂2). When m = ±1 and α = 1, the crite-
rion (45) yields Rb > −3/4 for instability, which includes the
case of Rb = 0 observed in the experiment [42].

In order to explore the Tayler instability on the base of the
dispersion relation (32), we assume Re = 0 in it and take into
account the relation

Re
√

Pm

�
= Haθ

ωAθ

. (46)

This reduces (32) to

[(
λHaθ

ωAθ

+
√

Pm

)(
λHaθ

ωAθ

+ 1√
Pm

)
+ Ha2

θm2

]2

(̂h2 + q̂2)

− 4Ha4
θ k̂2m2 − 4Ha2

θ

[
(̂k2 − m2)Rb + m2k̂2

ĥ2

]

×
[(

λHaθ

ωAθ

+
√

Pm

)(
λHaθ

ωAθ

+ 1√
Pm

)
+ Ha2

θm2

]
= 0.

(47)

We consider the limit where Pm is very small. Then the
growth rate is of O(

√
Pm), and we can renormalize the

eigenvalue as

λ = λ0

√
Pm. (48)

Then the leading-order terms of (48) are

(
1 + λ0

ωAθ

Haθ + Ha2
θm2

)2

(̂h2 + q̂2)

− 4Ha4
θ k̂2m2 − 4Ha2

θ

[
(̂k2 − m2)Rb + m2k̂2

ĥ2

]

×
(

1 + λ0

ωAθ

Haθ + Ha2
θm2

)
= 0. (49)

For very large magnetic field we have Haθ 
 1 and can
further renormalize the eigenvalue as

λ0 = λaHaθ (50)

and solve (49) for λa, to the leading order in Haθ
−1, as

λa

ωAθ

= −m2 + 2

ĥ2 + q̂2

{
(̂k2 − m2)Rb + m2k̂2

ĥ2

±

√√√√[(̂k2 − m2)Rb + m2k̂2

ĥ2

]2

+ m2k̂2 (̂h2 + q̂2)

}
.

(51)

In the limit of k̂ → 0, Eq. (51) yields

λa

ωAθ

= ±2m2Rb − m2(q̂2 + m2 + 2Rb)

q̂2 + m2
. (52)

One of the roots (52) is equal to −m2, whereas another one
becomes positive if

Rb < − 1
4 (m2 + q̂2) (53)

reproducing the first of the inequalities (37).
In the limit of k̂ → ∞ and α → 1, Eq. (51) reduces to

λ±
a

ωAθ

= 2Rb − m2 ± 2
√

Rb2 + m2

= (1 + Rb)2 − (1 ∓
√

Rb2 + m2)2. (54)

The root λ−
a /ωAθ in (54) is always negative. The other,

λ+
a

ωAθ

= (Rb +
√

Rb2 + m2)(2 + Rb −
√

Rb2 + m2),

is a product of two expressions, the first of which is always
positive, whereas 2 + Rb −

√
Rb2 + m2 is positive if

Rb >
m2

4
− 1 (55)

in accordance with (45), where α = 1. Therefore in the short
axial wavelength approximation we reproduce the result [30].
Note that Ogilvie and Pringle [22] established criterion (55)
for the case of ideal MHD.

In general, setting the right-hand side of (51) to zero, we
get the critical Rb at the neutral stability surface

Rb = 1

4

{
q̂2m2

k̂2 − m2
+ k̂2(m2 − 4)(̂k2 + 2m2) + m6

k̂4 − m4

}
. (56)

For k̂ = 0 the expression (56) yields the critical value of
the criterion (53) and for k̂ → ∞ the critical value of the
criterion (55).

Figure. 6 illustrates the transition from the criterion (55) to
the criterion (53) as k̂ varies from 100 to 0 at the fixed q̂ = 0,
based on the expression (56). At the value

k̂ =
√

3 − 1
2 q̂2 (57)

(equal to
√

3 for q̂ = 0 in Fig. 6) there are two saddle points
at

Rb = 1
8 q̂2 − 2 and m = ±

√
3 − 1

2 q̂2, (58)

corresponding to Rb = −2 and m = ±√
3 in Fig. 6. The sad-

dle points are formed by the straight lines m = ±
√

3 − 1
2 q̂2
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FIG. 6. The regions of the Tayler instability (blue) with the boundary (56) for q̂ = 0 and (top row from left to right) k̂ = 100, k̂ = √
3 + 0.1,

and k̂ = √
3 and (bottom row from left to right) k̂ = √

3 − 0.1, k̂ = 0.3, and k̂ → 0.

intersecting with the curve

Rb = 2m4 + (18 − q̂2)m2 − 4q̂2 + 24

4(q̂2 − 2m2 − 6)
.

Note that (58) implies an upper bound on the value of
q̂: |q̂| <

√
6. In these conditions the bifurcation value (57)

for the parameter k̂ sharply separates the cases of the short-
axial-wavelength (55) and long-axial-wavelength (53) Tayler
instability in the limit of vanishing Pm. However, in the case
|q̂| >

√
6 the saddle point is absent and the transition scenario

simplifies; see Fig. 7.

VI. AMRI AND TAYLER INSTABILITY AT FINITE Pm

The magnetorotational instability is, by definition, caused
by the cooperative effect of rotating flow field and magnetic
field. The cooperative action comes into play for a differential
rotation. Assuming the expansion of the solution in terms
of Re as λ±/ωAθ = a0Re + a1 + a2Re−1 + a3Re−2 + · · · , we
expand the dispersion relation (32) with respect to 1/Re and
solve the leading-order term to obtain a0. We repeat the

process to find the coefficient a1 from the next-order term
resulting in the following representation for the critical roots
at large Re:

λ1,2

ωAθ

= −im
Re

√
Pm

Haθ

− 1

Haθ

√
Pm

± m

√−Ro(Ro + 1)

Ro + 1

+ O

(
1

Re

)
,

λ3,4

ωAθ

= −iRe
√

Pm

Haθ ĥ2(q̂2 + ĥ2)
{m[̂k2 (̂k2 + q̂2 + 2Ro − 2)

+ m4 + m2(2̂k2 + q̂2 + 2Ro)] ± 2i
√

c2}

+ c3 + O

(
1

Re

)
, (59)

where

c1 = ĥ2Ro − k̂2,

c2 = −Ha2
θPm
[̂
k2ĥ4(̂h2 + q̂2)(1 + Ro) + m2c2

1

]
,

FIG. 7. The regions of the Tayler instability (blue) with the boundary (56) for q̂ = 3 and (from left to right) k̂ = 100, k̂ = 0.2, and k̂ → 0.
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FIG. 8. AMRI regions (above the neutral stability curves) in the (Haθ1 , Re1) plane for Rb = Ro = −1, m = 1, q = 3r−1
0 , r = 1.5r0 and

(left to right) Pm = 10, Pm = 1, and Pm = 10−6 found with the use of the growth rates maximized over k of the roots of the dispersion relation
(32) with the parameters specified by (62).

c3 = −
√

Pm

Haθ

− (1 − Pm)c1Ro(−m2c1Haθ

√
Pm ± im

√
c2)

c2 ± imc1
√

c2Haθ

√
Pm

.

The growing wave 
(λ) > 0 corresponding to λ1,2 for the
particular case of Keplerian flow (Ro = −3/4) with m = 1 is
admitted for

Haθ >
1√

3Pm
. (60)

For λ3,4, numerically we find that a growing wave is permitted
for small Pm and finite k̂. For example, for the Keplerian flow
(Ro = −3/4) and m = k̂ = Haθ = 1, Pm = 0.01, q̂ = 10, the
zeroth-order growth rate c3 ≈ 1.68.

In the PROMISE laboratory facility [36], the experimen-
tal setup is a Taylor-Couette flow between two corotating
cylinders of finite axial size. The inner cylinder is set with
the radius rin = 40 mm and the outer cylinder is with rout =
2rin = 80 mm. The gap between the cylinders is d = rout −
rin = rin. By that reason, in this section we assume rin = d =
r0. Recalling (17), we can write

�(rin ) = �(r)

(
r0

r

)2Ro

, μ(rin ) = μ(r)

(
r0

r

)2Rb

. (61)

This allows us to redefine the Reynolds and Hartmann num-
bers as follows:

Re1 = �(rin)d2

ν
= Re|k|2r2

0

(
r0

r

)2Ro

,

Haθ1 = μ(rin)d2

√
ρμ0νη

= Haθ |k|2r2
0

(
r0

r

)2Rb

, (62)

where |k|2 = k2 + q2 + m2/r2 and Re and Haθ are given by
(19). These Reynolds and Hartmann numbers (62) match
those of the numerical and experimental works [25,36,56].

The critical Reynolds number at the onset of instability is
crucial for the experimental realization of the MRI. The liquid
metals used in the experiments have Pm ∼ 10−6, and the
standard MRI which scales with the magnetic Reynolds num-
ber and the Lundquist number corresponds to the Reynolds
numbers of order 106. Therefore it is hard to maintain the
basic flow undisturbed before the onset of SMRI [4,5].

The helical and the azimuthal MRI scale with the Reynolds
and Hartmann numbers and thus require moderate ranges of
the Reynolds numbers compared to SMRI [31]. By that reason
both HMRI and AMRI were detected in the laboratory experi-
ments [8,9,33,34,36] for rotation which is a little bit shallower
than the Rayleigh value � ∼ r−1.9 and for the current-free az-
imuthal magnetic field corresponding to Rb = −1. In [37,43]
it was theoretically shown that the inductionless HMRI and
AMRI for the Keplerian flow with Ro = −3/4 exist when the
radial dependence of the azimuthal magnetic field is shallower
than that of the current-free type: Rb > − 1

8
(Ro+2)2

Ro+1 . In Sec. V
we have verified this result for large axial wave numbers,
k 
 1. The planned MRI-TI experiment in the frame of the
new DRESDYN facility [8,9] creates the azimuthal magnetic
field both due to currents isolated of the liquid metal and
passing directly through the metal thus allowing for variable
Rb including those satisfying the instability criterion (28).

On the other hand, in Sec. V we have found that for
small axial wave numbers, k � 1, the inductionless AMRI
of the Keplerian flow may occur at Rb < −1/4, which in-
cludes the current-free azimuthal magnetic field with Rb =
−1 used in the existing PROMISE experiment; see Fig. 4.
Using the redefined Reynolds and Hartmann numbers (62) in
this section we compare our WKB analysis with the results
from the global analysis [35,56] for arbitrary Pm and discuss
the implications for the experimental detection of the long-
axial-wavelength instability. In view of the recent discovery
of a long-wavelength linear instability of a hydrodynamical
Taylor-Couette flow [59] this direction is worth pursuing.

A. Case of Ro = Rb = −1 and m = 1 with q = 3r−1
0

Since the Taylor-Couette experimental apparatus is radially
bounded, we limit q from below and choose, e.g., q = 3r−1

0 ,
which is reasonable when the radial velocity disturbance
should be zero on the boundary and the width between the
two cylinders is r0. In Fig. 8 we present the instability region
in the (Haθ1 , Re1) plane. To find it, we numerically calculate
the maximum growth rate at every meshing point in the
(Haθ1 , Re1) plane for a wide range of k. Zero growth rates
correspond to the neutral stability curve. The calculation is
performed locally at r = 1.5r0, the average of rin = r0 and
rout = 2r0. Notice that the Tayler instability is excluded in this
parameter regime by (53) and (55). We can see that Fig. 8 is
similar to Fig. 1 of Hollerbach et al. [35] and Fig. 1 of Rüdiger
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FIG. 9. The maximized over k growth rate Re(λmax) in the units of � versus Haθ1 according to Eq. (32) with the parameters (62) for the
flow with Ro = −1, Rb = −1, Pm = 10−6, m = 1, q = 3r−1

0 , and r = 1.5r0 when (left) Re1 = 3000 and (right) Re1 = 500.

et al. [25]. The instability is invited when the Reynolds
number is of the order 102 when Pm � 1 and of the order 10
when Pm ≈ 1, 10. When Pm = 10−6, the critical Reynolds
number is Re1 ≈ 265, which is attained at Haθ1 ≈ 30, k =
3.4727r−1

0 , and q = 3r−1
0 . Note, however, that in Refs. [25,35]

the instability domains have a finite size along the Re axis,
which yields the existence of the second critical Reynolds
number by exceeding which the AMRI vanishes. The neutral
stability curves based on our local dispersion relation do not
catch this upper critical Reynolds number.

The left panel of Fig. 9 shows that for Re1 = 3000
and Pm = 10−6, the instability occurs when Haθ1 ∈ (4, 590).
The growth rate has its extremum 
(λmax)/�in ≈ 0.1483 at
Haθ1 ≈ 153 with the extremizer k ≈ 7.43r−1

0 . In the right
panel of Fig. 9 corresponding to Re1 = 500, the instability
occurs for Haθ1 ∈ (12, 93). The growth rate reaches its ex-

tremum 
(λmax)/�in ≈ 0.06397) at Haθ1 ≈ 46 with the ex-
tremizer k ≈ 4.35r−1

0 . We see that in both cases no instability
occurs when the magnetic field is sufficiently weak in agree-
ment with the argument in Sec. V A.

B. Case of Ro = Rb = −1/2 and m = 1 with q = 3r−1
0

The magnetic Rossby number Rb = −1/2 and the az-
imuthal wave number m = 1 lie inside the range (55) and
thus allow for the emergence of Tayler instability [39,56].
Figure 10 displays the variation of the instability regions in
(Haθ1 , Re1) plane when the magnetic Prandtl number Pm
changes from 100 to 0.1. This result compares well with
Fig. 3 of Rüdiger et al. [56]. We notice that there are two
types of instabilities, with the lower part originating from
the Tayler instability occurring without rotation in the basic

Pm = 100

TI
50 100 150

20

40

60

80

Re1 Pm = 10

TI
50 100 150

50

100

150

200

Re1

Pm = 1TI
50 100 150 200

Haθ1

100

200

300

Re1

Pm = 0.1

TI
50 150 250 350

Haθ1

200

400

600

800

1000

Re1

FIG. 10. The instability region in the (Re1, Haθ1 ) plane for Ro = −1/2, Rb = −1/2, m = 1, q = 3r−1
0 , r = 1.5r0, and Pm = 100, Pm =

10, Pm = 1, and Pm = 0.1. The instability domains represented in blue are found with the use of the growth rates maximized over k of the
roots of Eq. (32) with the parameters (62).
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FIG. 11. The optimized over k growth rate versus the Hartmann
number Haθ1 according to Eq. (32) with the parameters (62). The
parameters chosen are Re1 = 800, Rb = −1/2, Ro = −1/2, and
Pm = 0.1 with m = 1, q = 3r−1

0 , and r = 1.5r0.

state, and with the upper part originating from the AMRI. As
Pm decreases, the critical Reynolds number becomes larger
for the AMRI and the AMRI region shrinks to a seemingly
separate upper region. The critical Hartmann number for the
Tayler instability turns out to be insensitive to Pm. Figure 10
exhibits marked contrast with Fig. 8 where TI is excluded by
the criteria (53) and (55).

Closer to the experimental condition is the case of Pm =
0.1 in Fig. 10. Fixing Pm = 0.1 and Re1 = 800, we draw
the optimized over k growth rate as a function of Haθ1 in
Fig. 11. There are two instability intervals Haθ1 ∈ (69, 155) ∪
(210,∞). In the first one a local extremum is attained at
Haθ1 ≈ 112 with the wave numbers k = 2.7493r−1

0 and q =
3r−1

0 . The growth rate increases monotonically with Haθ1 for
Haθ1 > 195.

C. Case of Ro = −3/4, Rb = −1, and m = 1 with q = 3r−1
0

According to the instability condition (28) the Keple-
rian rotation with Ro = −3/4 cannot be destabilized by the
current-free azimuthal magnetic field with Rb = −1 in the
inductionless limit of Pm = 0. Instead, the criterion (28)
suggests shallower radial profiles for the magnetic field with

Rb > −25/32. Does this change for small but finite Pm?
The work [30] predicted regions of HMRI existing at such
values of the magnetic Prandtl number. What can we say about
AMRI?

Here we demonstrate that, for Ro = −3/4 and Rb = −1,
there is a minimum value of the magnetic Prandtl number
Pm, below which the instability is ruled out. Let us choose
r = 1.5r0 and search for the critical Pm for instability. For the
flow with Re1 = 104, the left panel of Fig. 12 shows that the
instability necessitates Pm > 0.0046, with the critical value of
Pm corresponding to Haθ1 ≈ 400. For Re1 = 103, the critical
value is raised to Pm ≈ 0.048 which is attained at Haθ1 ≈ 127
as shown by the right panel of Fig. 12.

As Re1 is increased, the critical value of Pm is decreased,
which yields a larger strength of magnetic field according to
(60). Large Reynolds numbers mean turbulence in practice
so that Pm � 10−3 is at least necessary for experimental
realization of the AMRI. However the liquid eutectic alloy
GaInSn has Pm = 1.4 × 10−6 making the AMRI of a Keple-
rian flow virtually impossible for the experimental setup with
the current-free azimuthal magnetic field [36]. Indeed, Fig. 13
shows that as Pm decreases, the instability region becomes
smaller and smaller.

However, as Fig. 4 demonstrates, in the limit (Pm → 0),
the k → 0 mode has positive growth rate. To approach this
instability, we set rout = r0 as the characteristic length but set
r to vary freely toward r = 0. By setting k̂ = 0 in (33), we
find its roots in the following form:

λ1

�
= −
√

r0

r

1

1 + (qr)2

Ha2
θ1

Re1
−
√

r0

r

1 + (qr)2

Re1
−i,

λ2

�
=
√

r0

r

3 − (qr)2

(1 + (qr)2)2

Ha2
θ1

Re1
−
√

r0

r

1 + (qr)2

Re1
−i

1 + 4q2r2

4 + 4q2r2
.

(63)

The first root has 
(λ1) < 0 and corresponds to a stable
mode. The second one indicates that, for large values of Haθ1 ,
the instability occurs when

(qr)2 < 3. (64)
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×10-3
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FIG. 12. The region of AMRI (above the critical lines) in the (Haθ1 , Pm) plane when Rb = −1, Ro = −3/4 and (left) Re1 = 104 and (right)
Re1 = 103 according to Eq. (32) with the parameters (62). In the former case the instability occurs when Pm > 0.0046 with the smallest Pm
corresponding to Haθ1 ≈ 400, whereas in the latter when Pm > 0.048 with the lowest Pm corresponding to Haθ1 ≈ 127.
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FIG. 13. The region of AMRI in the (Haθ1 , Re1) plane when
Ro = −3/4 and Rb = −1, m = 1, q = 3r−1

0 , and r = 1.5r0. The
neutral stability curve is obtained by maximizing the growth rate
over k for Pm = 10 and Pm = 1 with the use of Eq. (32) with the
parameters (62).

In addition, the radial wave number is bounded so as to satisfy
the boundary conditions at the cylinders of r = rin and rout,
indicating

q(rout − rin) > π > 3. (65)

Combining (64) and (65), we obtain

r

rout − rin
<

1√
3
. (66)

Setting r = (rin + rout)/2, we obtain an estimate for rin/rout as

rin

rout
<

2 − √
3

2 + √
3

≈ 0.0718. (67)

This crude argument suggests that the experimental setups
with rin/rout = 1/2 might need to be modified to have a wider
gap in order to be able to capture the mode of k = 0 for a
Keplerian flow subject to the current-free magnetic field.

VII. GLOBAL STABILITY ANALYSIS

In order to provide a numerical validation of the analytical
results based on the Hain-Lüst dispersion relation (32), in the
following we consider the cylindrical Taylor-Couette flow as
described in Sec. VI. We will decompose the magnetic and
velocity fields into toroidal and poloidal parts and after that

reduce the original MHD system (3)–(6) to a one-dimensional
boundary eigenvalue problem [35,44] by expanding the solu-
tion in the Heinrichs basis [15,58,61].

We assume a finite radial gap d := |rout − rin| and a ra-
dius ratio ζ := rin/rout that both define the geometry of the
setup. Our numerical method is based on the pseudospec-
tral expansion of the solution in terms of normal modes
before collocating at the Chebyshev-Gauss nodes. The code
we have developed has been benchmarked against several
well-established results of similar stability analyses for either
insulating or conducting boundary conditions with excellent
agreement.

For the sake of clarity, we first render the problem (3)–(6)
in a dimensionless form following the notations in Child et al.
[44] except for the background velocity field where we follow
the work of Deguchi [15]. This can be summarized by scaling
length with d , time with the viscous timescale d2/ν, velocities
with ν/d , pressure with ρν2/d2, and magnetic fields with B0.

A. Background fields and Rossby numbers

The scaling introduced before leads to the following set of
equations:

∂û
∂ t̂

= −(̂u · ∇̂)Û − (Û · ∇̂ )̂u − ∇̂P̂ + ∇̂2û

+ Ha2
θ

Pm
[(̂b · ∇̂)B̂ + (B̂ · ∇̂ )̂b],

∂b̂
∂ t̂

= ∇̂ × (Û × b̂) + ∇̂ × (̂u × B̂) + 1

Pm
∇̂2b̂,

∇̂ · û = 0, ∇̂ · b̂ = 0, (68)

where Haθ = B0d/
√

ρμ0νη is the azimuthal Hartmann num-
ber and Pm = ν/η is the magnetic Prandtl number.

This dimensionless MHD system is therefore solved re-
garding to no-slip boundary conditions for the velocity field,
which in the cylindrical coordinates (r, θ, z) lead to [59]

Ûθ (rin, θ, z) = �inrind

ν
=: Rein,

Ûθ (rout, θ, z) = κRein/ζ =: Reout, (69)

where Ûθ is the azimuthal component of the fluid velocity,
κ := �out/�in is the ratio between the angular velocities, and
the inner and outer radii can be defined according to the
Taylor-Couette parameters as rin := dζ/(1 − ζ ) and rout :=
d/(1 − ζ ).

A fundamental solution for this system and the boundary
conditions is the well-known Couette profile Û = r̂�(̂r)eθ ,
given by

�(̂r) = Rein

1 + ζ

[(
κ

ζ
− ζ

)
+ ζ (1 − κ )

(1 − ζ )2

1

r̂2

]
, (70)

where r̂ = rd−1 is the dimensionless radial coordinate.
The background magnetic field we consider here is purely

azimuthal B̂ = B̂φ (̂r)eθ and given by

B̂φ (̂r) = ζ (τ − ζ )

1 − ζ 2
r̂ + 1 − τζ

1 − ζ 2

1

r̂
, (71)
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where τ := Bout/Bin is the ratio between the outer and the
inner azimuthal magnetic fields [32].

Using (61) and (71) we can write

κ = ζ−2Ro, τ = ζ−(2Rb+1). (72)

Then the solid-body rotation (Ro = 0) corresponds to κ = 1
and the Keplerian flow (Ro = −3/4) to κ = ζ 3/2.

In the following, we will specify the basic state of the
magnetized flow via Ro, Rb, ζ , Rein, Pm, and Haθ defined
earlier.

B. Pseudospectral expansion

We seek for a solution to linearized MHD equations de-
composed into toroidal and poloidal parts as follows:

ũ = ∇ × (ψ er ) + ∇ × ∇ × (φ er ), (73)

b̃ = ∇ × (� er ) + ∇ × ∇ × (� er ). (74)

The disturbance fields (ψ, φ,�,�) in (73) and (74) are
expanded in terms of normal modes according to the pseu-
dospectral Fourier method. In it, each variable is expressed
with respect to Heinrichs basis [15,58,61] for the radial direc-
tion and to Fourier basis for the axial and azimuthal directions.
Such expansion can be represented for an arbitrary field L as

L(x, t, θ, z) :=
∞∑

n=0

[H(x)Tn(x)] exp [λt + i(mθ + kz)],

(75)
where Tn(x) is a Chebyshev polynomial, H(x) is the Heinrichs
factor, which depends on the boundary conditions considered,
λ is an eigenvalue, (m, k) are the azimuthal and axial wave
numbers, respectively, and x is the length coordinate.

In order for the method to be computable, the infinite series
are truncated at the N th order and the mapping of the radial
interval [rin, rout] to the Chebyshev interval [−1, 1] comes
from the linear transformation [58] x = 2(r − rm)d−1 with
rm = d (1 + ζ )/[2(1 − ζ )] being the mean radius. Finally,
the series are evaluated at the Chebyshev-Gauss collocation
points

xi = ± cos

(
π

i + 1

N + 2

)
, i = 0, . . . , N.

The decomposition (75) allows us to express the differen-
tial operators as functions of the wave numbers and parame-
ters of the system. Details of this method and coefficients of
the boundary value problem can be found, e.g., in Child et al.
[44] and Hollerbach et al. [35]. The set of equations we obtain
is solved regarding the boundary conditions considered, i.e.,
no-slip conditions for the velocity field and perfectly conduct-
ing for the magnetic field. Assuming the expansion in terms
of normal modes for each variables, these conditions can be
written in the following form [62]:

ψ = φ = ∂rφ = 0, (76)

� = 0, (77)

ik∂r� + ikr−1� + imr−1∂rr� − imr−2∂r� = 0. (78)

The system is therefore reduced to a generalised eigenvalue
problem of the form Aξ = λBξ , where λ is an eigenvalue and
ξ an eigenvector.

C. Numerical results

For a fixed set of boundary conditions, the boundary value
problem is solved and leads to the computation of the eigen-
values λ of the magnetized Taylor-Couette flow. The global
stability analysis is therefore conducted over similar sets of
parameters from the previous sections of this paper in order to
validate a large part of the results.

In Fig. 14 we compare growth rates given by the boundary
value problem, the Hain-Lüst dispersion relation (32) and the
original WKB approximation [30]. The latter solution is given
according to our notations as follows:


(λ)

�in
= Nθ

(
2Rb − m

α1

)
− 1

Re
±
√

2X + 2
√

X 2 + Y 2,

(79)
where Nθ = Ha2

θ /Re, α1 = k/
√

k2 + q2 and

X = N2
θ

(
Rb2 + m

α1

)
− (Ro + 1),

Y = Nθ (Ro + 2)
m

α1
.
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FIG. 14. The growth rate Re(λ) in units of �in over a range of magnetic Rossby number Rb for the Keplerian (Ro = −3/4) flow with
Rein = 104, Haθ = 102, Pm = 0, and m = 1, in the case of the long axial wavelength (ζ = 0.02/ζ = 0.336 and k = 10−4d−1, left/middle
panels) and short axial wavelength (ζ = 0.98 and k = 3.5d−1, right panel). The dotted blue line comes from the dimensionless Taylor-Couette
boundary value problem with the boundary conditions corresponding to the perfectly conducting walls. The red and dashed green lines
correspond to the Hain-Lüst dispersion relation (33) and the WKB approximation (79). The radial wave number is set to be q̂ = ζ/(1 − ζ ).
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FIG. 15. The growth rate Re(λ) in the units of �in from BVP (dash-dotted blue), WKB approximation (dashed green), and Hain-Lüst (red)
versus the axial wave number k (in units of d−1) for perfectly conducting boundaries. We set Rb = −1 with ζ = 0.02 (left) and ζ = 0.366
(middle) and Rb = 0 with ζ = 0.98 (right). The parameter space is the same as in Fig. 14.

The eigenvalues are both scaled with the inner angular
velocity �in and the stability analysis has been conducted
for different but finite radial gaps over different values of
Rb in Fig. 14. In the interest of reaching the k → 0 mode,
we have fixed a wide radial gap in order to have a small
radial wave number. We chose an arbitrary value for the
gap between both cylinders ζ = 0.02 and according to this
geometry, we manage to find a similar behavior for the growth
rate of the long-wavelength domain but with nevertheless a
discrepancy for the threshold of instability. Not surprisingly,
the WKB solution (79) in the long-wavelength approximation
is diverging at such value of k and therefore cannot be rep-
resented in this plot. In a similar way, if we decrease the gap
between both cylinders until the limit that Eq. (67) predict, the
numerical solution still behaves as the analytical result with
nevertheless a worst accuracy in the magnitude. Nevertheless,
while the WKB solution (79) is not able to catch such limit, it
appears that our extended version of the Hain-Lüst dispersion

relation can. Regarding the short-wavelength domain, we used
a narrow-gap ζ = 0.98 and a larger wave number k and
the growth rates from the BVP, the WKB solution and our
dispersion relations are as expected in good agreement.

The dependence of the growth rate on the axial wave
number k in our numerical scheme is represented in Fig. 15
where we observe that for the long-wavelength domain the
growth rate reaches its maximum for k → 0 as expected.
For the short-wavelength approximation, we are limited to a
smaller interval of k for which the growth rate is positive in the
BVP solution, but it still remains sufficient to produce smooth
and correct comparisons with the analytic. It is interesting to
notice that in the middle panel for ζ = 0.366, the numeric is
predicting a peak between both domains. A similar behavior
has been observed in the second figure of Bodo et al. [63]
and is analyzed by the authors as a localized state of MRI. As
we can notice, the WKB and the Hain-Lüst solutions are both
asymptotically converging to the same value as k is increasing

FIG. 16. Growth rate magnitude in the Rossby plane (Rb, Ro) from the boundary value problem with perfectly conducting boundaries for
the upper panels and from Hain-Lüst dispersion relation (32) for the lower panels. The geometry correspond to ζ = 0.02, k = 10−4d−1 (left
column), ζ = 0.366, k = 10−4d−1 (middle column), and ζ = 0.98, k = 3.5d−1 (right column). The parameter space is the same as in Fig. 14,
and stability is represented in white.
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(tending therefore to the short-axial-wavelength limit) only
when the radial gap between both cylinder is not too large.

The last computation presents the stability domains in the
(Rb, Ro) plane as in the previous Sec. V–B–4. This case
is presented in Fig. 16 where the growth rate magnitude
from the BVP and from the dispersion relation (32) is com-
puted. The left and middle column panels show the long-
wavelength instability domains with ζ = 0.02, ζ = 0.366,
and k = 10−4d−1 and despite the difference in the neutral sta-
bility boundaries, the shape of both domains are in agreement
with the analytical results of Fig. 16. When increasing the
value of k as in the right column of Fig. 16, we also notice
that the numerics is fitting well with our solution.

VIII. CONCLUSION

We have explored the AMRI and the Tayler instability of
a rotating MHD flow, augmented by viscosity and electrical
resistivity, with respect to the axisymmetric as well as nonax-
isymmetric perturbations. We have derived the extended Hain-
Lüst equation to include the viscosity and electrical resistivity.
This is a second-order ordinary differential equation for the
radial Lagrangian displacement.

We then applied the WKB approximation to it to derive a
dispersion relation, valid in the regime of short wavelengths
in the radial direction but allowing for arbitrary azimuthal and
axial wave numbers.

By that reason, the extended Hain-Lüst dispersion relation
contains the previously known dispersion relations derived by
different methods, including the geometrical optics approxi-
mation.

On the other hand, the additional terms in it enable more
accurate treatment of the nonaxisymmetric perturbations with
large axial wavelength.

While being in the limit of short axial wavelength we
restored the well-known results of the inductionless approxi-
mation, including the necessary condition (28) for both HMRI
and AMRI, and the generalized Tayler instability condition
(55), in the limit of long axial wavelength we discovered in-
stability that works both in the rotating and in the nonmoving
fluid.

We found a limitation on the radial wavelength providing
an estimate for the gap in a Taylor-Couette setup which is
necessary for detection of the instability. Finally, we com-
bined the numerical methods of Deguchi and Nagata [58,59]
and Child et al. [44] to validate the analytical findings, based
on the Hain-Lüst dispersion relation, using global stability
analysis.
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APPENDIX A: DERIVATION OF EQ. (14)

In this Appendix we derive the extended Hain-Lüst equa-
tion (14). The lines 4–6 in (10) allow us to express the
magnetic field disturbance b̃r , b̃θ , and b̃z in terms of the other
variables. By eliminating the magnetic field disturbances, we
can reduce (10) to equations for ξ1 = (ũr, ũθ , ũz, p̃) as

M1ξ1 = 0, (A1)

where, with use of (12),

M1 =

⎛⎜⎜⎜⎜⎜⎝

 + 2μr

ρμ0λ̃η

(
iF
λ̃η

�′ − μ′) −2� + 2iFμ

ρμ0λ̃η
0 1

ρ
d
dr

2� + r�′(1 + F 2

ρμ0λ̃2
η

)− 2iFμ

ρμ0λ̃η

 0 1

rρ im

0 0 
 1
ρ

ik

1
r + d

dr
im
r ik 0

⎞⎟⎟⎟⎟⎟⎠, (A2)

and the prime denotes the derivative with respect to r.
We then combine all the equations into a single second-

order differential equation for the radial component of the
Lagrangian displacement field. As an intermediate step, we
solve algebraic equations (A1) and express (ũr, ũθ , ũz ) in
terms of p̃ as

ũr = − 


Eρ

d p̃

dr
+ im

Eρr

(
2iFμ

λ̃ηρμ0
− 2�

)
p̃,

ũθ = 1

Eρ

[
2� + r�′

(
1 + F 2

ρμ0λ̃2
η

)
− 2iFμ

ρμ0λ̃η

]
d p̃

dr

− im

Erρ

[

 + 2μr

ρμ0λ̃η

(
iF

λ̃η

�′ − μ′
)]

p̃,

ũz = − ik

ρ

p̃, (A3)

where

E = 
2 + 2
μr

λ̃ηρμ0

(
iF

λ̃η

�′ − μ′
)

+ 2

(
� − iμF

λ̃ηρμ0

)

×
[

2� +
(

1 + F 2

λ̃2
ηρμ0

)
r�′ − 2iμF

λ̃ηρμ0

]
. (A4)

Upon substitution from (A3) for ũr , ũθ , the continuity
equation (5) produces a second-order differential equation
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for p̃:

d

dr

(



ρE

d p̃

dr

)
+
[




rEρ
− im

Eρ

(
1 + F 2

ρμ0λ̃2
η

)
�′
]

d p̃

dr

+ 2im

Er2ρ

(
� − iFμ

ρμ0λ̃η

)
p̃ + d

dr

[
2im

Erρ

(
� − iFμ

ρμ0λ̃η

)]
p̃

− 2m2

Er2ρ

[



2
+ μr

ρμ0λ̃η

(
iF

λ̃η

�′ − μ′
)]

p̃ − k2


ρ
p̃ = 0.

(A5)

The first of Eqs. (A3) yields an expression for χ =
−rũr/λ̃η in terms of p̃ and d p̃/dr:

χ = 
r

λ̃ηEρ

d p̃

dr
+ 2im

Eρλ̃η

(
� − iFμ

ρμ0λ̃η

)
p̃. (A6)

In order to derive the equation for χ , first we take the radial
derivative of (A6), and eliminate the second derivative of p̃,
with the help of (A5), leaving

dχ

dr
= im

Eρλ̃η

[(
1 − λ̃ν

λ̃η

)
r�′ + 2

(
� − iFμ

ρμ0λ̃η

)]
d p̃

dr

+ 2m2

Eρλ̃2
η

(
� − iFμ

ρμ0λ̃η

)
�′ p̃

+ h2r


Eρλ̃η

[

2 + 2μr

λ̃ηρμ0



(
iF

λ̃η

�′ − μ′
)]

p̃

+ 2k2r


Eρλ̃η

[
2� +

(
1 + F 2

λ̃2
ηρμ0

)
r�′ − 2iμF

λ̃ηρμ0

]

×
(

� − iμF

λ̃ηρμ0

)
p̃, (A7)

where h is defined by (13).
A combination of (A6) and (A7) brings the expression for

d p̃/dr in terms of χ and dχ/dr:

d p̃

dr
= −2iρmλ̃η

h2r2

(
� − iFμ

ρμ0λ̃η

)
dχ

dr
+ ρλ̃ηE


r
χ

− 2ρm2λ̃η

h2r3


(
� − iFμ

ρμ0λ̃η

)[(
1 − λ̃ν

λ̃η

)
r�′

+ 2

(
� − iFμ

ρμ0λ̃η

)]
χ. (A8)

This helps us to rule out d p̃/dr from (A7) and obtain


r
dχ

dr
− im

[(
1 − λ̃ν

λ̃η

)
r�′ + 2

(
� − iFμ

ρμ0λ̃η

)]
χ

= h2r2

ρλ̃η

p̃. (A9)

Multiplying both sides of (A9) by ρλ̃η/(h2r2), taking the
derivative in r and then substituting from (A8) for d p̃/dr
expressed in terms of χ and dχ/dr, we eventually arrive at

the extended Hain-Lüst equation (14):

d

dr

(
f

dχ

dr

)
+ s

dχ

dr
− gχ = 0, (A10)

supplemented by (15).

APPENDIX B: CONNECTION TO REF. [43]

We write again the dispersion relation (16), which we
deduced from the extended Hain-Lüst equation (14):

λ̃2
η


2 + 4α2

(
�λ̃η − iFμ

ρμ0

)
×
[
�Ro(ωη − ων ) +

(
�λ̃η − iFμ

ρμ0

)]

+ 4
h2λ̃η

h2 + q2

{(
�2Ro − μ2

ρμ0
Rb

)

+ imr

4

d

dr

⎡⎣2
(
�λ̃η − iμF

ρμ0

)
+ (ωη − ων )r�′

h2r2

⎤⎦⎫⎬⎭ = 0,

(B1)

where 
 = λ̃ν + F 2

λ̃ηρμ0
and α2 = k2

h2+q2 . The dispersion rela-

tion in Ref. [43] differs from (B1) only by the term


h2λ̃ηimr

h2 + q2

d

dr

[
2
(
�λ̃η − iμF

ρμ0

)+ (ωη − ων )r�′

h2r2

]
. (B2)

We illustrate the difference by calculating the growth rates
given by the two dispersion relations for Ro = −1/2, Rb =
−1/2, m = 1, and Pm = 1. We define α1 by α2

1 = k2/(k2 +
q2). Expanding the growth rates at large values of Haθ for
(B1) with and without the term (B2), we find


(λ)

�
= aH Haθ + O

(
Ha0

θ

)
,


(λ)

�
= aK Haθ + O

(
Ha0

θ

)
,

(B3)

respectively, where

aH = 1

Re
√

[1 + (rk)2]
[
α2

1 + (rk)2
]

× ((α2
1 − 1

)
(rk)2 − (1 + α2

1

)
(rk)4

+α1
{
4(rk)4[1 + (rk)2]2 + α2

1 (1 + 8(rk)2

+ 10(rk)4 + (rk)8]
} 1

2
) 1

2 ,

aK = 1

Re

√√
α2

1

(
4 + α2

1

)− (1 + α2
1

)
. (B4)
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The relation between aH and aK becomes clear, if we
expand aH in power of 1/k at large values of |k| leaving

aH = 1

Re

√√
α2

1

(
4 + α2

1

)− (1 + α2
1

)
+
[(

3 + α2
1

)√
α2

1

(
4 + α2

1

)− α2
1

(
5 + α2

1

)]√
α2

1

2
√

α2
1 + 4

√√
α2

1

(
4 + α2

1

)− 1 − α2
1Re

1

k2r2

+ O

(
1

k4

)
. (B5)

We find that the leading-order term is aK .

APPENDIX C: CONNECTION TO REF. [63]

Bodo et al. [63] consider compressible MHD without
viscosity and electrical resistivity in contrast to our setting,
which is an incompressible MHD with viscosity and electrical
resistivity. Here we demonstrate that in the limit of infinite
speed of sound (cs → ∞) the differential equation (35) of
Ref. [63] yields the same version of the Hain-Lüst equation for
the Lagrangian displacement as our Eq. (14) does for ν = 0
and η = 0.

Indeed, the differential equation (35) in Ref. [63] is

d2

dr2
(rξr ) + d

dr
ln

(
�

rC2

)
d

dr
(rξr )

+
[

C2C3 − C2
1

�2
− rC2

�

d

dr

(
C1

rC2

)]
(rξr ) = 0, (C1)

which can be transformed to

d

dr

[
�

rC2

d

dr
(rξr )

]
+
[

C2C3 − C2
1

r�C2
− d

dr

(
C1

rC2

)]
(rξr ) = 0.

(C2)

The coefficients �, C1, C2, and C3 are defined in Ref. [63] by
Eqs. (27)–(30) that contain the sound speed cs. Retaining only
the leading-order terms in cs in the assumption that cs 
 1,

we write these coefficients as

� = c2
s

(
ρω̃2 − k2

B

)2
,

C1 = −2mc2
s

r2
(kBBφ + ρvφω̃)

(
ρω̃2 − k2

B

)
,

C2 = −c2
s

(
k2 + m2

r2

)(
ρω̃2 − k2

B

)
,

C3 = c2
s

(
ρω̃2 − k2

B

)2[
ρω̃2 − k2

B + r
d

dr

(
B2

φ − ρv2
φ

r2

)]

− 4c2
s

r2

(
ρω̃2 − k2

B

)
(kBφ + ρvφω̃)2, (C3)

where we omit the subscript 0 that was used in Ref. [63] to
denote the equilibrium.

In Ref. [63] kB = m
r Bφ + kBz and ω̃ = ω − m

r vφ − kvz.
In our notation before Appendix C, φ = θ and m, k are de-

fined with opposite sign. Hence, comparing with our notation
we have kB = −F , Bφ = μr, vφ = r�, vz = 0, and ω = −iλ.
Now, using (C3), we can write

�

rC2
= − ρω̃2 − k2

B

r
(
k2 + m2

r2

) ,
C2C3 − C2

1

r�C2
− d

dr

(
C1

rC2

)
= 1

r

(
ρω̃2 − k2

B

)+ d

dr
(μ2 − ρ�2) − 4(kBμ + ρω̃�)2

r
(
ρω̃2 − k2

B

)
+ 4m2(kBμ + ρω̃�)2

r3
(
k2 + m2

r2

)(
ρω̃2 − k2

B

) − d

dr

[
2m(kBμ + ρω̃�)

k2r2 + m2

]
.

(C4)

Substituting (C4) into (C2), then dividing both sides of the
resulting equation by a constant ρ, and noticing that in our
notation χ = −rur/λ̃ = −rξr , we arrive at the same Hain-
Lüst equation (14) that is derived in our paper and in which
one needs to set ν = 0 and η = 0; see also Ref. [55].

We notice also that the dispersion relation (37) in Ref. [63],
which is a sixth-degree polynomial derived in the assumption
cs = 0, totally differs from our dispersion relation (16) corre-
sponding to the incompressible limit cs → ∞.
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